Estimating Dynamic Structural Models in Economics using Open Science Grid

Alessandro PERI
CU Boulder, Department of Economics

Conference

HOW Meeting 2019 - Jefferson Lab
Corporate Default Rates and Credit Spreads

Estimating Dynamic Structural Models in Economics using Open Science Grid
What we do in our Project

- Paper: *Financial Development, Default Rates and Credit Spreads*

- Document disconnect between default rates and credit spreads

- Rationalize it with a theory of financial development

 - Firms increase their leverage: Default rates go up

 - Firms operate at a more efficient scale: recovery rates goes up

 - As a result Credit spreads barely move

- Heterogenous agents’ model quantitatively account for

 - disconnect between default rates and credit spreads

 - number of trends that have interested public firms during the last decades.
What we do in our Project

- Paper: *Financial Development, Default Rates and Credit Spreads*

- Document disconnect between default rates and credit spreads

- Rationalize it with a theory of **financial development**

 - Firms increase their leverage: **Default rates go up**

 - Firms operate at a more efficient scale: recovery rates goes up

 - As a result **Credit spreads barely move**

- Heterogenous agents’ model quantitatively account for

 - disconnect between default rates and credit spreads

 - number of trends that have interested public firms during the last decades.
What we do in our Project

- Paper: *Financial Development, Default Rates and Credit Spreads*

- Document disconnect between default rates and credit spreads

- Rationalize it with a theory of financial development

 - Firms increase their leverage: Default rates go up

 - Firms operate at a more efficient scale: recovery rates goes up

 - As a result Credit spreads barely move

- Heterogenous agents’ model quantitatively account for

 - disconnect between default rates and credit spreads

 - number of trends that have interested public firms during the last decades.
What we do in our Project

- Paper: *Financial Development, Default Rates and Credit Spreads*

- Document disconnect between default rates and credit spreads

- Rationalize it with a theory of financial development

 - Firms increase their leverage: Default rates go up

 - Firms operate at a more efficient scale: recovery rates goes up

 - As a result Credit spreads barely move

- Heterogenous agents’ model quantitatively account for

 - disconnect between default rates and credit spreads

 - number of trends that have interested public firms during the last decades.
What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How**: Heterogeneous Agents Model
 - Agents do the best they can (*Optimization*)
 - We aggregate agent decisions to get equilibrium outcomes
 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)
 - Perform policy experiment

- **Computational challenges**:
 - Determining agents’ decisions (*Optimization* - Inner Loop)
 - Estimating the structural parameters (*Optimization* - Outer Loop)
What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How**: Heterogeneous Agents Model

 - Agents do the best they can (*Optimization*)

 - We aggregate agent decisions to get equilibrium outcomes

 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)

 - Perform policy experiment

- **Computational challenges**:

 - Determining agents’ decisions (*Optimization* - Inner Loop)

 - Estimating the structural parameters (*Optimization* - Outer Loop)
Introduction

What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How**: Heterogeneous Agents Model

 - Agents do the best they can (*Optimization*)

 - We aggregate agent decisions to get equilibrium outcomes

 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)

 - Perform policy experiment

- **Computational challenges**:

 - Determining agents' decisions (*Optimization - Inner Loop*)

 - Estimating the structural parameters (*Optimization - Outer Loop*)
What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How:** Heterogeneous Agents Model

 - Agents do the best they can (*Optimization*)

 - We aggregate agent decisions to get equilibrium outcomes

 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)

 - Perform policy experiment

- **Computational challenges:**

 - Determining agents’ decisions (*Optimization* - Inner Loop)

 - Estimating the structural parameters (*Optimization* - Outer Loop)
What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How**: Heterogeneous Agents Model

 - Agents do the best they can (*Optimization*)

 - We aggregate agent decisions to get equilibrium outcomes

 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)

 - Perform policy experiment

- **Computational challenges**:

 - Determining agents’ decisions (*Optimization* - Inner Loop)

 - Estimating the structural parameters (*Optimization* - Outer Loop)

Estimating Dynamic Structural Models in Economics using Open Science Grid
What we do in Macroeconomics

- Study how changes in the environment θ affect the macroeconomy

- **How**: Heterogeneous Agents Model

 - Agents do the best they can (*Optimization*)

 - We aggregate agent decisions to get equilibrium outcomes

 - Find θ for which equilibrium outcomes closer to the data (*Optimization*)

 - Perform policy experiment

- **Computational challenges**:

 - Determining agents’ decisions (*Optimization* - Inner Loop)

 - Estimating the structural parameters (*Optimization* - Outer Loop)
The Inner Loop
Determining Agents’ Decisions
Determining agents’ decisions

Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]
Optimization - Inner Loop

Determining agents’ decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]
Determining agents’ decisions

Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]
Determining agents’ decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s')Q(ds', s) \]

- More in general

\[V(\cdot) = TV(\cdot) \]
Determining agents’ decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]

- More in general

\[V(\cdot) = TV(\cdot) \]
Determining agents’ decisions

- Agents do the best they can

\[
V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s)
\]

- More in general

\[
V(\cdot) = TV(\cdot)
\]

- Solution: Value Function Iteration (VFI)

\[
V^i(\cdot) = T^i V^0(\cdot)
\]
Determining agents’ decisions

Agents do the best they can Our problem

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s')Q(ds', s) \]

Solution: Value Function Iteration (VFI)

\[V^i(s) = T^i V^0(s) \]

Guess \(V^0 \)

\[V^1(k, z) = \max_{k' \in K} F(k, z, k') + \beta \cdot \int_{z'} V^0(k', z') Q(z', z')dz' \]

New Guess

Guess

Get new Guess \(V^1 \)
Determining agents' decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]

- **Solution**: Value Function Iteration (VFI)

\[V^i(s) = T^i V^0(s) \]

- Guess \(V^1 \)

\[V^2(k, z) = \max_{k' \in K} F(k, z, k') + \beta \cdot \int_{z'} V^1(k', z') Q(z', z') dz' \]

- New Guess

- Get new Guess \(V^2 \)
Determining agents’ decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]

- **Solution**: Value Function Iteration (VFI)

\[V^i(s) = T^i V^0(s) \]

- Guess \(V^2 \)

\[V^3(k, z) = \max_{k' \in K} F(k, z, k') + \beta \cdot \int_{z'} V^2(k', z') Q(z', z') dz' \]

- Get new Guess \(V^3 \)
Optimization - Inner Loop

Determining agents’ decisions

- Agents do the best they can
 \[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int_{s'} V(s') Q(ds', s) \]

Solution: Value Function Iteration (VFI)

\[V^i(s) = T^i V^0(s) \]

- Guess \(V^{i-1} \)

\[V^i(k, z) = \max_{k' \in K} F(k, z, k') + \beta \cdot \int_{z'} V^{i-1}(k', z') Q(z', z') dz' \]

- Get new Guess \(V^i \)

- Repeat \(V^i = T V^{i-1} \) till when \(||V^i - V^{i-1}|| < \epsilon \)
Determining agents’ decisions

- Agents do the best they can

\[V(s) = \max_{s' \in \Gamma(s)} F(s, s') + \beta \cdot \int Q(ds', s) V(s') \]

Solution: Value Function Iteration (VFI)

\[V^i(s) = T^i V^0(s) \]

Computational Challenges:

- Peak-finding Algorithm
- Value Function Iteration
Given a particular economy θ:

- Agents do the best they can (*Fixed Point Algorithm*):
 - Firms maximize dividends (given banks' interest rates)
 - Banks choose interest rates on loans (given firms' behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m_{\text{Model}}(\theta)$

- Find θ for which equilibrium outcomes closer to the data (*Optimization - Outer Loop*)
Closing the Model

Given a particular economy θ:

- Agents do the best they can (**Fixed Point Algorithm**):
 - Firms maximize dividends (given banks’ interest rates)
 - Banks choose interest rates on loans (given firms’ behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m^{Model}(\theta)$
- Find θ for which equilibrium outcomes closer to the data (**Optimization - Outer Loop**)

Optimization - Inner Loop
Closing the Model

Given a particular economy θ:

- Agents do the best they can (**Fixed Point Algorithm**):
 - Firms maximize dividends (given banks’ interest rates)
 - Banks choose interest rates on loans (given firms’ behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m_{\text{Model}}(\theta)$

- Find θ for which equilibrium outcomes closer to the data (**Optimization - Outer Loop**)
Optimization - Inner Loop

Closing the Model

Given a particular economy θ:

- Agents do the best they can (Fixed Point Algorithm):
 - Firms maximize dividends (given banks’ interest rates)
 - Banks choose interest rates on loans (given firms’ behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m_{\text{Model}}(\theta)$

- Find θ for which equilibrium outcomes closer to the data (Optimization - Outer Loop)
Given a particular economy θ:

- Agents do the best they can *(Fixed Point Algorithm)*:
 - Firms maximize dividends (given banks’ interest rates)
 - Banks choose interest rates on loans (given firms’ behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m_{Model}(\theta)$

- Find θ for which equilibrium outcomes closer to the data *(Optimization - Outer Loop)*
Optimization - Inner Loop

Closing the Model

Given a particular economy θ:

- Agents do the best they can (Fixed Point Algorithm):
 - Firms maximize dividends (given banks’ interest rates)
 - Banks choose interest rates on loans (given firms’ behavior)

(Other pieces of the puzzle: Entrants, Firms’ Invariant Distribution)

- We aggregate agent decisions to get equilibrium outcomes $m^{\text{Model}}(\theta)$
- Find θ for which equilibrium outcomes closer to the data (Optimization - Outer Loop)
The Outer Loop

Estimating the structural parameters θ
Estimating the structural parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\zeta = 0.35$</td>
<td>Borrowing Costs</td>
<td>Avg Leverage</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>$\sigma_e = 0.20$</td>
<td>Uncertainty</td>
<td>Std Leverage</td>
<td>0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>$\xi = 110.4$</td>
<td>Uncertainty 2</td>
<td>Default Rate</td>
<td>0.32%</td>
<td>0.36%</td>
</tr>
<tr>
<td>$k_e = 8.5$</td>
<td>Capital Entrants</td>
<td>Investment Rate</td>
<td>0.63%</td>
<td>0.54%</td>
</tr>
<tr>
<td>$\gamma = 0.09$</td>
<td>Equity Issuance</td>
<td>Share Dividends</td>
<td>83%</td>
<td>82%</td>
</tr>
</tbody>
</table>
Estimating the Structural Parameters

$$\theta^* = \arg\min_{\theta \in \Theta} L (m^{\text{Model}}(\theta), m^{\text{Data}})$$

- **Problem 1**: Computing $m^{\text{Model}}(\theta)$ takes time
 - Estimating Bellman Equation via Value Function Iteration

- **Problem 2**: Loss Function
 - Local Minima may not be Global Minima
 - **Solution**: Global Search

- **Problem 3**: The Parameter Space: Θ
Estimating the Structural Parameters

\[\theta^* = \arg\min_{\theta \in \Theta} L \left(m_{\text{Model}}(\theta), m_{\text{Data}} \right) \]

- **Problem 1**: Computing \(m_{\text{Model}}(\theta) \) takes time
 - Estimating Bellman Equation via Value Function Iteration

- **Problem 2**: Loss Function
 - Local Minima may not be Global Minima
 - **Solution**: Global Search

- **Problem 3**: The Parameter Space: \(\Theta \)
Optimization - Outer Loop

Estimating the Structural Parameters

\[\theta^* = \arg\min_{\theta \in \Theta} L(m_{\text{Model}}(\theta), m_{\text{Data}}) \]

- **Problem 1**: Computing \(m_{\text{Model}}(\theta) \) takes time
 - Estimating Bellman Equation via Value Function Iteration

- **Problem 2**: Loss Function
 - Local Minima may not be Global Minima
 - **Solution**: Global Search

- **Problem 3**: The Parameter Space: \(\Theta \)
Well, our object collision budget's about a million dollars a year. That allows us to track about 3% of the sky, and begging your pardon sir, but it's a big-aXX sky.
Well, our object collision budget’s about a million dollars a year. That allows us to track about 3% of the sky, and begging your pardon sir, but it’s a big-ass sky.
Quest for Computing Power

- Buy my own cluster
- Amazon AWS
- Computational Resources
 - RMACC Summit supercomputer
 - XSEDE
 - OSG
Quest for Computing Power

- Buy my own cluster
- Amazon AWS

Computational Resources
- RMACC Summit supercomputer
- XSEDE
- OSG
Quest for Computing Power

- Buy my own cluster
- Amazon AWS
- Computational Resources
 - RMACC Summit supercomputer
 - XSEDE
 - OSG
Quest for Computing Power

- Buy my own cluster
- Amazon AWS

Computational Resources
- RMACC Summit supercomputer
- XSEDE
- OSG
Quest for Computing Power

- Buy my own cluster
- Amazon AWS
- Computational Resources
 - RMACC Summit supercomputer
 - XSEDE
 - OSG

Estimating Dynamic Structural Models in Economics using Open Science Grid
Global Search over Parameter Space in OSG

- **Perfect Fit:** Model Economy θ
 - independent of each other
 - not memory intensive (<2GB)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

Perfect Fit: Model Economy θ

- independent of each other
- not memory intensive ($<2\text{GB}$)
- run within 1-12 hours
- portable (C++)

DAGMan HTC Condor’s workflow

- Easy to use
- Low Monitoring Costs

Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

- **Perfect Fit**: Model Economy θ
 - independent of each other
 - not memory intensive ($<2\text{GB}$)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (**No SU**)

Optimization - Outer Loop
Global Search over Parameter Space in OSG

- **Perfect Fit:** Model Economy θ
 - independent of each other
 - not memory intensive (<2GB)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

- **Perfect Fit**: Model Economy θ
 - independent of each other
 - not memory intensive ($<2\text{GB}$)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

- **Perfect Fit:** Model Economy θ
 - independent of each other
 - not memory intensive (<2GB)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

- **Perfect Fit:** Model Economy θ
 - independent of each other
 - not memory intensive (<2GB)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (No SU)
Global Search over Parameter Space in OSG

- **Perfect Fit:** Model Economy θ
 - independent of each other
 - not memory intensive (<2GB)
 - run within 1-12 hours
 - portable (C++)

- DAGMan HTC Condor’s workflow
 - Easy to use
 - Low Monitoring Costs

- Opportunistic usage and sharing of resources (**No SU**)
Incumbents’ Value Function

\[
V_i(\omega_i, z_i) = \max_{\phi_{D,i} \in \{0,1\}} (1 - \phi_{D,i}) V_i^c(\omega_i, z_i)
\]

\[
V_i^c(\omega_i, z_i) = \max_{d_i, k_i', l_i'} d_i + \beta \sum_{z_i'} \sum_{\xi_i'} \Gamma_{z_i, z_i'} \Gamma_{\xi_i} V_i(\omega_i', z_i')
\]

s.t. \((1 + \gamma \mathbb{I}_{\{d_i<0\}}) d_i = \omega_i + l_i' - k_i' \)

\[
\omega_i' = \pi_i' + (1 - \delta) k_i' - \left([1 + r_i'] \mathbb{I}_{\{l_i'>0\}} + [1 + r_F] \mathbb{I}_{\{l_i'<0\}} \right) l_i'
\]

\[(z_i, k_i', l_i', r_i') \in H(z_i, k_i, l_i')\]