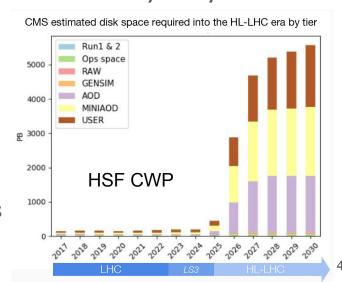
Data Analysis: Trends in Technology

Danilo Piparo (CERN) for the HSF DAWG Conveners

This Talk


- Also elaborates input of first 2 DAWG events
 - DAWG Analysis Requirements Jamboree
 - Ist DAWG Technology and Innovation meeting
 - Thanks again to all attendees and 20 speakers!
 - Diversity: students, postdocs, senior scientists, LHC, e+e-, heavy ions, physicists, software specialists, universities, laboratories.
- Objective: summarise trends and themes identified in the contributions and discussions
 - Trigger discussions
- Not the final word about future analysis technologies
 - Rather the opposite: another milestone of our journey

Content

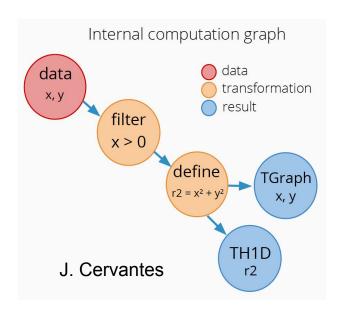
- Challenges posed by future datasets sizes
- Simplicity and programming model
 - O Declarative analysis, analysis description, programming languages
- Parallelism and performance
- New interfaces
- Potential next steps

Future Dataset Sizes

- The Community is aware of the forthcoming challenges
- Not only a hurdle for LHC Run3 and Run4
 - Belle2: projected size of Phase3 dataset is 60PB
 - CMS W mass Run2 precision study: O(IB) events needed already today
- Looking for the "right" set of tools
 - And analysis procedures
- At least three areas to invest in:
 - Programming model: simplicity
 - Performance and parallelism (in all forms)
 - o Infrastructure: data management, analysis facilities

Strive for Simplicity

- An objective of many, very present in all contributions
 - Cost of dealing with complexity is high and does not scale linearly
- Different meanings of simplicity in different contexts
- Analysis specific frameworks


T.J. Khoo

- Handling of datasets, systematics, automatic bookkeping of results
- "Easy to do the right thing" e.g. pick the right calibrations, workarounds
- Rely often on very flexible configuration systems
- Programming model
 - Declarative approach, same code for local and distributed execution, high level description of data transformation and actions.

Declarative Analysis

- Established approach: <u>>40y old</u>
 - Specify what you want and not how you want to do it
- Possible frontend/backend separation opens new possibilities:
 - Caching of intermediate results
 - Optimisations targeted to exploit hardware features
 - Analysis description languages, also important for Preservation
 - Transparently distributed computations
- A lot already achieved, potential hurdles ahead:
 - o R&D needed, e.g. for efficient caching, state hashing
 - o Paradigm shift wrt today's imperative approach, e.g. no explicit loops
 - Express functional approach with non-functional languages (Can we stick always to a functional programming style?)

Declarative Approach - Graphs and Queries

N. Smith

Languages

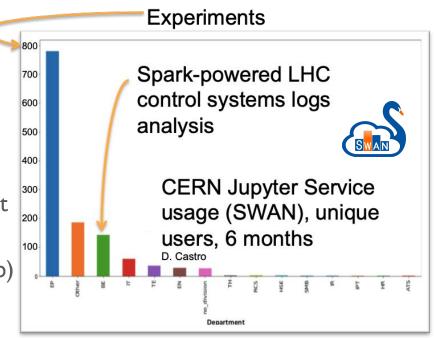
- The C++-Python duo is the reference
 - o Functionality-, performance- and programming model-wise
- Clear trend: propose Python to physicists and accelerate it with C++/Python jitting and bindings to compiled libraries
- An example of C# (+LINQ)
 - Can we re-propose the useful concepts discussed w/o imposing the language itself?
- No in-depth discussion about this but the idea of an Analysis
 Description Language is in the air.

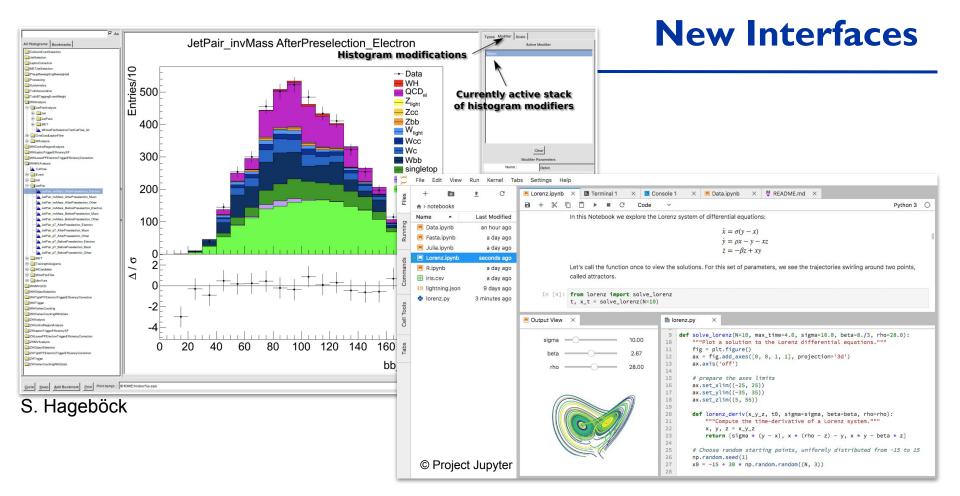
Parallelism and Performance 1/2

- We'll need efficient backends
- Physicists cannot and will not always write optimised analysis code
- Can we improve providing high quality trainings complementing universities' curricula?

Parallelism and Performance 2/2

- Parallelism is a prerequisite for future analysis, in all forms
 - O Data parallelism: accessed transparently via array syntax, backed by SIMD. Can we think to accelerators? Is it worth and under what circumstances?
 - Multithreading: become recently accessible with an acceptable programming model only with a declarative approach
 - Multiprocessing: needed for Python only frameworks, potentially legacy C++ code
 - Batch jobs: presently used extensively, HEP has extensive experience, not orthogonal with other ways of expressing parallelism (MT, MP, vectorisation)
 - Interactive distributed analysis: not an entirely new approach (PROOF). Revived thanks to tools such as Apache Spark.


Single Server and Distributed Parallelism


- We'll need to count on distributed (interactive/batch) computations
 - Manage clusters, e.g. in clouds
- We'll be able to count on O(100) cores individual servers
 - Available already now at some universities and labs
 - E.g. fast turn-around, checks required by analysis reviews
- Our software must be flexible enough to get the maximum of both kind of resources: parallelism is key.
- Can we identify an analysis use case for which the use of GPUs represents a game changer?

New Interfaces

Not only compiled code + shell invocations

- Interpreted code (C++ and Python)
- Interactive exploration
- Graphical User Interfaces
- Jupyter, not only notebooks
 - Results+explanations in the same document (Notebook)
 - Fully fledged web-based desktop (Jupyterlab)
 - Develop code, document and share
 - An ingredient for Preservation?

Analysis Facilities

Resources dedicated to analysis. Objectives:

- \circ Reduce as much as possible Δt between dataset arrival and results produced
- Increase quality/quantity of scientific results within same resource envelope

• R&D needed, e.g.:

- Data management beyond file based approach
- Creation of columnar datasets `à la carte` (no slimming)
- User interface: interactive, web based, explorative analysis
- Optimisations, e.g. caching: user specific, common to all users
- Partition of resources
- User storage space, e.g. sync'n'shared

Wrap up and potential Future Steps

- Were all prototypes and production tools relevant for future HEP data analysis reviewed?
- Can concepts common to all HEP experiments be identified?
- Can a classification of the aforementioned tools help?
 - Table: row is the technology/tool, columns supported features
- Create a set of common benchmarks of increasing complexity
 - O Compare and improve ergonomy of interfaces, performance
 - Can this be useful for testing/procurement of new hardware too?
- Next few months: organise WG meetings about benchmarks, ongoing efforts and collaboration strategies