ROOT with

Q

Data

S. Wunsch for the ROOT team
HSF Workshop Jefferson Lab

Declarative Analysis in

-rame

This Talk

» ROOT's declarative analysis Unless explicitly stated, we
refer to the
> Array syntax

> Real life examples

e CMS W mass analysis and H—pp study with systematics variations
e Totem full analysis distributed with Apache Spark

» Keywords, actions and transformations

> Interoperability with Python

» Conclusions and plans

https://root.cern/content/release-61600

Dec

arative A

RDatarra

nalysis:

e

A recipe for efficient HEP analyses

= strive for a simple programming model
= expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

- allow to transparently benefit from parallelism

Dy taso,, ree
~—
~

ROOT
csv
Apache Arrow
[ATLAS xAOD]
[LHCb's MDF]
<Your Format>

Customisation point,
public interface!

Goals:

- Be the fastest way to manipulate HEP data

- Be the go-to ROOT analysis interface from laptop to cluster
- Consistent interfaces in Python and C++

= Top notch documentation and examples

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

An ergonomic, fast C++ dataframe

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") ~- v only accept events for which x > 0
Define("r2", "X*X + yFy"): define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); oo plot r2 for events that pass the cut

df2.Snapshot("newtree”, "out.root"); -~ write the skimmed data and r2

to a new ROQOT file

An ergonomic, fast C++ dataframe

ROOT::EnablelmplicitMT(); - Run a parallel analysis

ROOT::RDataFrame df(dataset); oo on this (ROOT, CSV, ...) dataset

auto df2 = df.Filter("x > 0") ~- v only accept events for which x > 0
Define("r2", "X*X + yFy"): define r2 = x2 + y2

auto rHist = df2.Histo1D("r2"); oo plot r2 for events that pass the cut

df2.Snapshot("newtree”, "out.root"); -~ write the skimmed data and r2

to a new ROQOT file

Lazy execution guarantees that all operations are performed in one event loop

Analyses as computation graphs

(Odata
Qtransformation
ROOT::RDataFrame df(dataset);

auto df2 = df.Filter("x > 0")
Define("r2", "x*x + y*y");
auto rHist = df2.Histo1D("r2");

df2.Snapshot("newtree”, "newfile.root"); @
\ Write datasets to disk, also in parallel.

define

r2=x2+y?

No templates: C++ — JIT

C++

d.Filcer([J(double t) {return t>0.; }, {"theta"})
Snapshot<vector<float>>("mytree","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation

d.Filcer("theta > 0").Snapshot("mytree","f.root","pt_x");

Examples from the tutorials

CMS Open Data is=8TeV,L =1161" CMS Open Data is=8TeV,L =116fb"

2 » 18
Z 10 PO, iy Z 18
oMo r

NS s . \ . Y(1,2,3S) 7 14 .

104 — Y B |
= M h ,,,,,, \ 12—
- \ | i
1 -

o L—— nu,v L
10° N j 10

140 160 180

. (GeV) m,, (GeV)
Tutorial Tutorial

102 -

1 10

» Fully runnable examples with data and code

» More realistic analysis examples in the pipeline! 10

https://root.cern/doc/master/df102__NanoAODDimuonAnalysis_8C.html
https://root.cern/doc/master/df103__NanoAODHiggsAnalysis_8C.html

Real Life Examples

R — pp

Realistic analysis, 100 systematics

» 3400 nodes in the
computation graph, heavy
usage of RVec

» 1GB input file, NanoAOD
format, LZMA compressed

» Reading+Decompressing:
~20% of the sequential
runtime

Intel Core i7 7820X (8*2 cores,
3.60GHz)

H — pp + syst, 3.4k nodes, 1GB, LZMA, NanoAOD

Realistic Analysis, Large Computation Graph:
Good Performance & Efficient Scaling

https://root.cern.ch/doc/master/classROOT_1_1VecOps_1_1RVec.html

H—bb + syst, 3.4k Defines, 1GB, LZMA, NanoAOD

H — bb
Realistic analysis, 100 systematics & 30% Speedup achieved (21
» 3400 nodes in the » KHz) thanks to small buffer
computation graph, heavy _. optimisation (not in ROOT

usage of RVec
» 1GB input file, NanoAOD
format, LZMA compressed
» Reading+Decompressing:
~20% of the sequential
runtime

Intel Core i7 7820X (8*2 cores,
3.60GHz)

Realistic Analysis, Large Computation Graph:
Good Performance & Efficient Scaling

https://root.cern.ch/doc/master/classROOT_1_1VecOps_1_1RVec.html

Does All This Scale?

192*2 cores Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz
x10°

1600

1400

o E. Manca (SNS & CERN)
-.g 1200 CMS W Mass Analysis
© (with 10)
L

1000

800

600

~1.5 MHz
@ 90 Cores!

400

200

FTTTTTTTTT T TTT T TTT T TTTT TT T TTT
| I I | | | | |

50

o

Cores

RDataFrame Scales on Many Cores
14

Does All This Scale?

192*2 cores Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

x10°
1600 Under
Investigation!

1400

o - E. Manca (SNS & CERN)
-.g 1200{— CMS W Mass Analysis
© n (with 10)
T 1000:—

800 —

6005—

- ~1.5 MHz
YAl @ 90 Cores!
200—

Ll TSN | IR

50 < 100 ’

‘150 200I — 250I —
Cores

RDataFrame Scales on Many Cores
15

o

Distributed Analysis

RPN

Investigate and prototype a complement to PROOF

» Parallelism on many nodes
» Transparent distribution
» Support several different backends

/ \r N
d = RDataFrame (“t”, dataset) Local l_b
f = d.Define(...) ‘

.Define(...)
.Filter(...) “ [Spark ‘ l
2
hl = f.HistolD(...) > o S .
h2 = f.HistolD(...) o ¥ — .
= i = . .
\h3 f.HistolD(...) V. E o
55 | a
Not in 6.16 Q
O Working L ; O) [SSH ‘
prototype

available!

https://github.com/JavierCVilla/PyRDF

Distributed Systems

Original RDataFrame

RDataFrame with PyRDF

Spark backend

/ selected by default

[import ROOT

Initialize RDataFrame object
df = ROOT.ROOT.RDataFrame(dataset)

Define operations

df2 = df.Filter("x > 0")
.Define("r2", "x*x + y*xy")

rHist = df2.Histol1D("r2")

Display histogram
rHist.Draw()

import PyRDF]

Initialize RDatalgame object
df = PyRDF.RDataFrame(dataset)

Define operations

df2 = df.Filter("x > 0")
.Define("r2", "xxx + y*xy")

rHist = df2.Histol1D("r2")

Display histogram
rHist.Draw()

17

Spark Cluster: RDF Totem Analysis Scaling

Speedup

RDF+Spark Scaling

10

» Revisited published
TOTEM analysis -
CS thesis about this
effort
It works and there is
room for further
improvement

1 H
|

108
Number of Cores

] Underutilization e

aexecuTos || 25 C
Executor Cores s Active Tasks.

https://root.cern.ch/full-totem-analysis-based-rdataframe-and-distributed-big-spark-cluster-pyrdf

Array Syntax

Array Syntax and its Support

» Ergonomic interfaces for treating collections: a must for HEP data
analysis

» ROOT::RVec class:

std::vector like interface

Array operations are vectorised

Math functions supported

Can adopt memory

Small buffer optimisation

» RDataFrame relies on RVec for treating collections
e Zero copy with adoption
e SBO makes functional approach performant

20

ROOT::RVec<T> In Action

RVec<doubles mus pt {15.; 12.; 10.6; 2.3; 4.; 3.};
RVec<double> mus_eta {1.2, -0.2, 4.2, -5.3, 0.4, -2.};
RVec<double> good_mus_pt = mus_ptlmus_pt > 10 && abs(mus_eta) < 2.1];

Already integrated

RVec<float> vals = {2.f, 5.5f, -2.f}; with RDataFrame
RVec<float> sin_vals = sin(vals);

py is a collection,
ROOT: :EnableImplicitMT(); nota scalar
RDataFrame f(treename, filename);
f.Define("good_pt", "sqrt(pxxpx + py*py)[E>100]1")
«HisteolD({"pt"; "pt™; 16, =5; 3.5F; "good pt")=>Draw():

21
D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEPI8

Keywords, Actions and
Transtformations

Transformations

» Transformations allow to modify the dataset

Transformation **Description*

Define Creates a new column in the dataset.

Same as Define, but the user-defined function must take an extra unsigned int slot
as its first parameter. slot will take a different value, 0 to nThreads - 1, for each thread
DefineSlot of execution. This is meant as a helper in writing thread-safe Define transformation when
using RDataF rame after ROOT: : EnableImplicitMT (). DefineSlot works just as well
with single-thread execution: in that case slot will always be 0.

Same as DefineSlot, but the entry number is passed in addition to the slot number. This

DefineSlotEntry . ,

is meant as a helper in case some dependency on the entry number needs to be honoured.
Filter Filter the rows of the dataset.
Range Creates a node that filters entries based on range of entries

23

Lazy Actions 1/3

J = 4 3 /\

» Lazy actions do not trigger the event loop

Lazy action Description

Aggregate Execute a user-defined accumulation operation on the processed column values.
Book Book execution of a custom action using a user-defined helper object.
— Caches in contiguous memory columns' entries. Custom columns can be cached as well,
ache
filtered entries are not cached. Users can specify which columns to save (default is all).
Count Return the number of events processed.
Obtains the events in the dataset for the requested columns. The method returns a RDisplay
Display instance which can be queried to get a compressed tabular representation on the standard
output or a complete representation as a string.
Fill Fill a user-defined object with the values of the specified branches, as if by calling
i
“Obj.Fill(branch1, branch2, ...).
- Fills a TGraph with the two columns provided. If Multithread is enabled, the order of the
ra
3 points may not be the one expected, it is therefore suggested to sort if before drawing.
Histo{1D,2D,3D} | Fill a {one,two,three}-dimensional histogram with the processed branch values. 24

Lazy Actions 2/3

Return the maximum of processed branch values. If the type of the column is inferred, the

Max
return type is double, the type of the column otherwise.
Mean Return the mean of processed branch values.
- Return the minimum of processed branch values. If the type of the column is inferred, the
in

return type is double, the type of the column otherwise.

Profile{1D,2D} Fill a {one two}-dimensional profile with the branch values that passed all filters.

Reduce (e.g. sum, merge) entries using the function (lambda, functor...) passed as argument.
el The function must have signature T(T, T) where T is the type of the branch. Return the final
educe
result of the reduction operation. An optional parameter allows initialization of the result

object to non-default values.

Obtains statistics on how many entries have been accepted and rejected by the filters. See
. ’ the section on named filters for a more detailed explanation. The method returns a

epor

. RCutFlowReport instance which can be queried programmatically to get information about

the effects of the individual cuts.

StdDev Return the unbiased standard deviation of the processed branch values. 25

Lazy Actions 3/3

Return the sum of the values in the column. If the type of the column is inferred, the return

Sum
type is double, the type of the column otherwise.

Extract a column from the dataset as a collection of values. If the type of the columnis a
Take C-style array, the type stored in the return container is a ROOT: : VecOps: :RVec<T>to
guarantee the lifetime of the data involved.

26

>

0

Instant Actions 3/3

Instant actions do trigger the event loop

Instant
action

Foreach

Description

Execute a user-defined function on each entry. Users are responsible for the thread-safety of this
lambda when executing with implicit multi-threading enabled.

ForeachSlot

Same as Foreach, but the user-defined function must take an extra unsigned int slot as
its first parameter. slot will take a different value, 0 to nThreads - 1, for each thread of
execution. This is meant as a helper in writing thread-safe Foreach actions when using
RDataFrame after ROOT: : EnableImplicitMT(). ForeachSlot works just as well with
single-thread execution: in that case slot will always be 0.

Snapshot

Writes processed data-set to disk, in a new TTree and TFile. Custom columns can be saved as
well, filtered entries are not saved. Users can specify which columns to save (default is all).
Snapshot, by default, overwrites the output file if it already exists.|Snapshot can be made lazy

setting the appropriate flage in the snapshot options.

27

Python Interoperability

d.Filcer([J(double t) {return t>0.; }, {"theta"})
.Snapshot<vector<float>>("mytree","f.root" {"pt_x"});

C++ with cling’s just-in-time compilation

d.Filcer("theta > 0").Snapshot("mytree","f.root","pt_x");

PyROOT, automatically generated Python bindings

d.Filter("theta > 0").Snapshot("mytree","f.root","pt_x")
29

RDataFrame to numpy and pandas

Run input pipeline with C++ performance that can process TBs of data, reads from remote,
import ROOT
df = ROOT.RDataFrame("tree", "file.root")

.Filter("HLT_Mu22_v42", "Trigger requirement")

.Filter("All(tight_iso)", "Quality cut")

.Define("r", "sqrt(eta*eta + phi*phi)")

Extract selection w/ defined variables as numpy arrays
col_dict = df.AsNumpy(["r", "eta", "phi"])

Wrap data with pandas All the power of RDF +

import pandas - possibility to convert to

p = pandas.DataFrame(col_dict) . :

print(p) NumPy: coming in 6.16/02
r eta phi

6 0.26 0.1 -0.5

1T 1.0 -1.0 0.0

2 4.45 2.1 0.2

See A More Pythonic, Interoperable and Modern PYROOT, 11/3 16:10 Steinmatte
30

https://indico.cern.ch/event/708041/contributions/3276254/

nr\—\“-—-\l_m—-\m'\ 4—1\ i 1 1 MNA VAL "\I’\I\I andas
1 1 Preliminary, subjective, not built. p
EXpePImenta’]' deta’l]'s Missing info means didn’t discuss yet

Machine learning
PandaX

Run input pipeli * CNNs
import ROOT
df = ROOT.RDataFrsg

Filter (]
RSRRTYa@ XENONNT

.Define (' Used but only published in masters theses

DarkSide

* Dedicated efforts ramping up

Extract selectio
col_dict = df.AsN

Wrap data with p
import pandas
p = pandas.DataFrsg

. Used extensively in LUX, starting in LZ
print(p)

https://indico.cern.ch/event EXQ_ : e o

. . bt MNIEIN CHEIEY TELUIIDLIULLIVIL dI LILIE
/759388/contributions/330 . Mot challehge:
M * Using Python ML codes starting from

ROOT (said see uproot)
1/3 16:10 Steinmatte

31

https://indico.cern.ch/event/708041/contributions/3276254/
https://indico.cern.ch/event/759388/contributions/3302370/
https://indico.cern.ch/event/759388/contributions/3302370/
https://indico.cern.ch/event/759388/contributions/3302370/

Python Callables in RDF

import ROOT
import numpy

Create an RDataFrame from a ROOT file
df = ROOT.RDataFrame("tree", "file.root") F{!g([)

Declare Python callable to be visible from C++
@ROOT .DeclareCppCallable(["float", "float"], "float")
def func(x, y):

return numpy.sqrt(x**2 + yxx2)

Make Python callable

Call Python function from C++, e.g.,
to define a new column in the RDataFrame
df2 = df.Define("r", "ROOT::func(eta, phi)")

available to the Cling

» Compilation with Numba also possible

» Functionality available, focussing on the interfaces and programming model
32

NumPy Arrays as RDataSource

import ROOT
import numpy

Assume data represented by numpy arrays F{‘;([)
X = numpy.array([... 1)
y = numpy.array([...])

Construct an RDataFrame reading from the numpy arrays
df = ROOT.MakeNumpyDataFrame({"x": x, "y": y})

Perform transformations and actions on the dat

df2 = df.Define("z", "sqrt(x*x + y*y)") A factory function
returning a
RDataFrame

zero copy Py <-> Cpp
through arrays

33

Wrap-up

ROOQOT offers a production grade declarative analysis interface

> Easy, fast, scalable: demonstrated with large real life use cases
> Interoperable with Python
» Top notch documentation and examples

Bright future ahead:

Further develop the distributed analysis demonstrator
Transform today’s use-case in a long-running benchmark suite
Put in production PyROOT related developments

Make RDF the data reading backend for machine learning

vV v vy

35

