Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP)

PI: Peter Elmer (Princeton), co-PIs: Brian Bockelman (Morgridge Institute), Gordon Watts (U.Washington) with UC-Berkeley, University of Chicago, University of Cincinnati, Cornell University, Indiana University, MIT, U.Michigan-Ann Arbor, New York University, Stanford University, UC-Santa Cruz, UC-San Diego, U.Illinois at Urbana-Champaign, U.Puerto Rico-Mayaguez and U.Wisconsin-Madison

http://iris-hep.org

IRIS-HEP was funded as of 1 September, 2018, and is currently ramping up activities
And Introduction: My Background

- PhD in experimental particle physics (Wisconsin, SLW)
- HEP Experiments: ALEPH (CERN), BaBar (SLAC), CMS (CERN)
- Princeton staff since 2001, based in Geneva, Switzerland
- I’ve had a variety of software/computing roles in BaBar and CMS software and computing over the years. These have been mostly on the development side, but (in particular in BaBar) occasionally in operations
- I played a major role in computing model updates in BaBar (2003-2004) and CMS (2005-2007), as well as subsequent evolution in CMS
- Things I have not done in the past: manage facilities myself or direct involvement in OSG!
Science Driver: Discoveries beyond the Standard Model of Particle Physics

From “Building for Discovery - Strategic Plan for U.S. Particle Physics in the Global Context” - Report of the Particle Physics Project Prioritization Panel (P5):

1) Use the Higgs boson as a new tool for discovery
2) Pursue the physics associated with neutrino mass
3) Identify the new physics of dark matter
4) Understand cosmic acceleration: dark matter and inflation
5) Explore the unknown: new particles, interactions, and physical principles

Computational and Data Science Challenges of the High Luminosity Large Hadron Collider (HL-LHC) and other HEP experiments in the 2020s

The HL-LHC will produce exabytes of science data per year, with increased complexity: an average of 200 overlapping proton-proton collisions per event.

During the HL-LHC era, the ATLAS and CMS experiments will record ~10 times as much data from ~100 times as many collisions as were used to discover the Higgs boson (and at twice the energy).
IRIS-HEP

Sustainable Software R&D objectives

1) Development of **innovative algorithms** for data reconstruction and triggering;

2) Development of highly performant **analysis systems** that reduce “time-to-insight” and maximize the HL-LHC physics potential; and

3) Development of **data organization, management and access systems** for the community’s upcoming Exabyte era.

4) Integration of software and scalability for use by the **LHC community on the Open Science Grid**, the **Distributed High Throughput Computing infrastructure in the U.S.**

The plan for IRIS-HEP reflects a community vision developed by the S2I2-HEP conceptualization project (http://s2i2-hep.org) and an international community process organized by the HEP Software Foundation (https://hepsoftwarefoundation.org).

IRIS-HEP will function as an intellectual hub for the national and international HEP community, through training, community workshops and the development of wider collaborations with the larger computer and data science communities.
IRIS-HEP implements the roadmap described in the S2I2-HEP Strategic plan (https://arxiv.org/abs/1712.06592), with an R&D plan which aims to:

- enable new approaches to computing and software that can radically extend the physics reach of the detectors; and
- achieve improvements in software efficiency, scalability, and performance, and to make use of the advances in CPU, storage, and network technologies;
- ensure the long term sustainability of the software through the lifetime of the HL-LHC.

The S2I2-HEP Strategic Plan is a subset of the community roadmap described in the Community White Paper (https://arxiv.org/abs/1712.06982).
IRIS-HEP Structure and Executive Board

Software Sustainability Core
- Software Engineering, Training, Professional Development, Preservation, Reusability

Integration
- Scalable Systems Laboratory
 - Scalability & Platforms Testing

Operations
- OSG-LHC Services
 - Packaging, Validation, Deployment Support and Operations of Production Services

Governance
- Institute Management
- Data Organization, Management and Access
- Innovative Algorithms
- Exploratory

Hub of Excellence
- Challenges and Opportunities

Executive Board
The IRIS-HEP Executive Board manages the day to day activities of the Institute.

- **Peter Elmer**
 - Princeton University
 - peter.elmer@cern.ch
 - Institute PI and Executive Director

- **Gordon Watts**
 - University of Washington
 - Institute co-PI and Deputy Executive Director

- **Brian Bockelman**
 - Morgridge Institute
 - Institute co-PI and DQM Area Lead

- **Heather Gray**
 - University of California, Berkeley
 - Innovative Algorithms Area co-Lead

- **David Lange**
 - Princeton University
 - David.Lange@cern.ch
 - Innovative Algorithms Area co-Lead

- **Kyle Cranmer**
 - New York University
 - Analysis Systems Area Lead

- **Sudhir Malik**
 - University of Puerto Rico at Mayaguez
 - Training, Education and Outreach Coordinator

- **Mark Neubauer**
 - University of Illinois at Urbana-Champaign
 - Blueprint Coordinator

- **Rob Gardner**
 - University of Chicago
 - SSL Area Lead

- **Frank Wuerthwein**
 - University of California, San Diego
 - OSG-LHC Area Lead and OSG Executive Director
Innovative Algorithms - Trigger/Reconstruction

Algorithms for real-time processing of detector data in the software trigger and offline reconstruction are critical components of HEP’s computing challenge.
Innovative Algorithms

These algorithms face a number of new challenges during HL-LHC:

● Upgraded accelerator capabilities, with more collisions per bunch crossing (“pile-up”)
● Detector upgrades, including new detector technologies and capabilities
 Increased event rates to be processed
● Emerging computing architectures
Data Organization, Management and Access (DOMA)

The DOMA focus area performs fundamental R&D related to the central challenges of organizing, managing, and providing access to exabytes of data from processing systems of various kinds.

- **Modeling**: Better understand LHC data usage patterns as a DOMA is organized into three areas:
- **Data Access**: Develop capabilities to deliver filtered and transformed event streams to users and analysis systems.
- **Data Management**: Improve and deploy distributed storage infrastructure spanning multiple physical sites. Improve inter-site transfer protocols and authorization.
Analysis Systems R&D Goals

Develop sustainable analysis tools to extend the physics reach of the HL-LHC experiments by creating greater functionality, reducing time-to-insight, lowering the barriers for smaller teams, and streamlining analysis preservation, reproducibility, and reuse.

Compared to DOMA and Innovative Algorithms (which has more targeted reco/trigger goals), the Analysis Systems group is dealing with more “greenfield” area where there is a very heterogeneous set of use cases and relevant components.

The nature of IRIS-HEP Analysis Systems tasks is more exploratory and “big R” (R&d)
Analysis Systems Data Flow and Projects

Partner Focus Area
- Leverage & align with industry
- Training & workforce development

DOMA
Production System Analysis Files
- Leverage & align with industry
- Training & workforce development

SSL
Scan data, explore with histograms, making final plots
- scikit-hep
- awkward array
- Parsl

Fitting, manipulation, limit extrapolation
- pyhf
- HistFactory v2
- GooFit
- Decay Language

Archiving, publication, reinterpretation, etc.
- Analysis Database
- Recast
- CAP/INSPIRE/HEPDATA

Capture & Reuse

Analysis Systems, analysis & declarative languages (underlying framework)
Scalable Systems Laboratory (SSL)

Goal: Provide the Institute and the HL-LHC experiments with scalable platforms needed for development in context

- Provides access to infrastructure and environments
- Organizes software and resources for scalability testing
- Does foundational systems R&D on accelerated services
- Provides the integration path to the OSG-LHC production infrastructure
Open Science Grid (OSG) and IRIS-HEP

OSG Effort Portfolio

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∑</td>
<td>Technology</td>
<td>Operations</td>
<td>Support</td>
<td>Networking</td>
<td>Security</td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>∑</td>
<td>17.56</td>
<td>7.46</td>
<td>4.05</td>
<td>2.82</td>
<td>1.24</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>OSG N5Y</td>
<td>6.86</td>
<td>2.48</td>
<td>2.05</td>
<td>1.82</td>
<td>0.00</td>
<td>0.20</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>IRIS-HEP</td>
<td>5.94</td>
<td>3.08</td>
<td>1.00</td>
<td>0.00</td>
<td>0.39</td>
<td>0.80</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>SAND</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>OSG-NP</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>TNR</td>
<td>1.00</td>
<td>0.70</td>
<td>0.20</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CESER</td>
<td>2.00</td>
<td>0.70</td>
<td>0.30</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

IRIS-HEP is roughly 1/3 of total effort in OSG

(Slide from FKW)
The People in OSG

Deputy Director: Tim Cartwright
Security: Zalak Shah, Susan Sons
operations: John Thillges, Marian Zvada
Mátéys (Mat) Selmeci
releases: Tim Theisen
networking: Shawn McKee
software: Brian Lin, Derek Weitzel, Carl Edquist

Operations = UNL
Security = Indiana University
Software = U. Wisconsin – Madison
Networking = U. Michigan

A total of 6 FTE across 11 people. These people have worked together and with the LHC program years.
This is a general framework for training, but from the NSF we have funds from both IRIS-HEP (OAC-183665) and a separate project FIRST-HEP (OAC-1829707, OAC-1829729, http://first-hep.org) which can work towards implementing this model.
IRIS-HEP and OSG

IRIS-HEP will provide to OSG:

- Continuity - The OSG is a successful working team. As it reorganizes around a different funding model, IRIS-HEP will provide effort to support the common services needed for the LHC, and as part of the larger team.

IRIS-HEP expects from OSG:

- (Hopefully mutually beneficial) engagement with our R&D activities which are exploring how we will accomplish our research program in the 2020s
- An environment in which we can engage with other scientific programs in the US on how cyberinfrastructure will evolve