
Boost.Histogram	

Hans	Dembinski1	
1MPIK	Heidelberg,	Germany	

	
DIANA-HEP	meeting,	1	Oct	2018	

2	

boost.histogram in a nutshell
•  Multi-dimensional	histogram	in	C++,	current	release	v3.2	

–  Header-only	
–  Feature	set	based	on	ROOT	histograms,	GSL	histograms,	scikit-hep/histbook	

•  Source:	https://github.com/hdembinski/histogram	
•  Docs:	http://hdembinski.github.io/histogram/doc/html	
•  Thoroughly	unit-tested:	line	coverage	99.94	%	
•  Selected	features	

–  Automatic	memory	efficient	handling	of	bin	counters	
–  No-overflow	guarantee	
–  Supports	many	axis	types,	e.g.	circular	axis	and	category	axis	
–  Supports	weighted	increments	
–  Faster	than	other	libs	in	benchmarks	(but	see	details)	

•  Planned	features	
–  Support	of	profiles	
–  Support	library	with	histogram	transformations	

•  Accepted	for	inclusion	in	Boost	
•  Python	bindings	under	development	(used	to	be	included	in	earlier	releases)	

https://github.com/hdembinski/histogram-python	

3	

Why Boost C++ libraries?
•  Boost	

–  Free	peer-reviewed	portable	C++	source	libraries	
–  Greatly	extends	functionality	of	C++	stdlib	
–  Popular	in	science	and	industry	
–  Often	first	step	towards	C++	standardization	
	

•  Why	adding	a	histogram	library	to	Boost?	
–  Standard-alone	basic	component	in	statistics	software	

•  Compact	self-contained	library	is	possible	
–  Stop	reinvention	of	the	wheel	

•  Solution	must	be	useful	for	everyone	
•  Solution	must	be	customizable	and	fast	(policy-based	design)	

–  Complement	existing	sub-libraries	with	statistics	tools	
•  Accumulators	
•  Math	
•  Random	(superset	of	std::random)	

`	

4	

C++ example
#include	<boost/histogram.hpp>	//	all-in-one	header	
	
int	main()	{	
		namespace	bh	=	boost::histogram;	
		using	namespace	bh::literals;	//	enables	_c	suffix	
	
		auto	h	=	bh::make_static_histogram(bh::axis::regular<>(6,	-1.0,	2.0,	"x"));	
	
		auto	data	=	{	-0.4,	1.1,	0.3,	1.7	};	
		auto	h	=	std::for_each(data.begin(),	data.end(),	h);	
	
		for	(auto	it	=	h.begin();	it	!=	h.end();	++it)	{	
				const	auto	bin	=	it.bin(0_c);	
				std::cout	<<	"bin	"	<<	it.idx(0)	<<	"	x	in	["	<<	bin.lower()	<<	",	"	<<	bin.upper()	<<	"):	”	
																					<<	it->value()	<<	"	+/-	"	<<	std::sqrt(it->variance())	<<	std::endl;	
		}	
}	
/*	program	output:	(note	that	under-	and	overflow	bins	appear	at	the	end)	
bin	0	x	in	[-1.0,	-0.5):	0	+/-	0	
...	
bin	5	x	in	[1.5,	2.0):	1	+/-	1	
bin	6	x	in	[2.0,	inf):	0	+/-	0	
bin	-1	x	in	[-inf,	-1):	0	+/-	0	*/	

5	

Policy-based design
histogram<typename	Axes,	typename	Storage>	
•  Host	class	
•  Defines	public	n-dimensional	interface	
•  Converts	n-dimensional	index	to	internal	sequential	counter	address	

	
Options	for	Axes	=	Sequence	of	axis	types	
•  Static	sequence 	 	std::tuple<...>	

•  When	number	and	axis	types	are	known	at	compile-time	
•  Very	fast	execution	speed	

•  Dynamic	sequence 	std::vector<axis::any<...>>	
•  When	number	and	axis	types	are	only	known	at	run-time	
•  Reduced	code	execution	speed	(about	a	factor	2)	
•  Python-bindings	require	this	

	
Options	for	Storage	
•  Static	counters 	 	array_storage<T>	

•  Full	control	over	counter	type,	but...	
•  Choice	of	T	may	not	be	safe/efficient	and	difficult	to	predict	before	seeing	the	data	

•  Dynamic	counters	 	adaptive_storage	
•  Cannot	overflow	
•  Adaptive	memory	consumption	
•  Runtime	cost	over-compensated	by	better	utilization	of	CPU	cache	

•  Add	your	own,	e.g.	mmap’d	file,	stack-based	buffer,	...	

a	variant	of	
static	polymorphism	

6	

Benchmarks

TH1I	

TH2I	

TH3I	

THnI	

histogram<std::vector<axis::any<...>>,	adaptive_storage>	
histogram<std::vector<axis::any<...>>,	array_storage<int>>	
histogram<std::tuple<...>,	adaptive_storage>	
histogram<std::tuple<...>,	array_storage<int>>	

2.9	GHz	Macbook	Pro,	1	million	bins	placed	along	1,	2,	3,	and	6	dimensions	

adaptive_storage	wins	over	
array_storage	from	3D	onwards	

7	

Histogram interface
•  Make	histogram	with	factory	functions	
	
	

•  Fill	histogram	
template	<typename...	Ts>	void	operator()(Ts...	ts)	
template	<typename...	Ts>	void	operator()(weight_type<U>	w,	Ts...	ts)	

•  Access	i-th	axis	
AxisType	axis(CompileTimeNumber)	const	
axis::any<...>	axis(unsigned	i)	const	

•  Access	bin	
element_type	at(Ts...	ts)	const	
element_type	operator[](T	index)	const	

•  Iterate	over	bins	
const_iterator	begin()	const	
const_iterator	end()	const	

Returns	fancy	iterator	with	extra	methods	
to	access	bin	information	

template	<typename...	Ts>	HistogramType	make_static_histogram(Ts...	ts)	
template	<typename...	Ts>	HistogramType	make_dynamic_histogram(Ts...	ts)	
(+	variants	that	allow	to	specific	storage	type)		

8	

AxisType concept

•  Functor	which	maps	values	to	bin	indices	
•  Optionally	supports	labels	
•  Optionally	supports	extra	bins	for	under-/overflow	
•  Optionally	is	streamable/serializable	

int	operator()(value_type	x)	const	
converts	from	value	to	index	
	
bin_type	operator[](int	i)	const	
converts	from	index	to	bin	type	

Almost	arbitrary	bin_type,	may	represent	interval	or	single	value	

9	

Built-in axis types
•  regular	

regular<>(10,	0,	1)	
regular<transform::log>(10,	1,	1e5)	
...	

	
•  circular	

circular<>(4,	0,	two_pi)		
		

	
	

•  variable	
variable<>({0.1,	0.3,	0.9})	:	2	bins	[0.1,	0.3),	[0.3,	0.9)	

		
•  integer	

integer<>(3,	6)	:	3	bins	3,	4,	5	
	

•  category	
category<std::string>({“red”,	“blue”})	:	2	bins	“red”	and	“blue”	

	 		

0,	2π

π

π/23π/2

0	 1	0.5	

0.1	 0.9	0.3	

3	 5	4	

red	 blue	

Add	your	own!	

10	

StorageType concept
•  Fixed-sized	container	of	bin	counters	
•  May	manage	bin	counters	dynamically	
•  Provides	read	access	to	counter	value	
•  Allows	incrementing	counters	and	adding	values	

–  Optionally	specialize	when	adding	weights	
•  Supports	adding	other	same-sized	storage	
•  Supports	scaling	all	counters	by	number	
•  Optionally	is	streamable/serializable	

element_type	operator[](std::size_t	index)	const	
void	increase(std::size_t	index)	
template	<typename	T>	void	add(std::size_t	index,	const	T&	x)	
storage_type&	operator+=(const	storage_type&	other)	storage_type&	
operator*=(const	scale_type&	x)	
	
template	<typename	T>	void	add(std::size_t	index,	weight_type<T>&&	w)	

11	

Boost review: Sep 17-26
•  30+	emails	exchanged	

https://lists.boost.org/Archives/boost/2018/09/243468.php	
https://lists.boost.org/Archives/boost/2018/09/243340.php	

•  5	full	reviews	
–  Very	detailed	review	by	Steven	Watanabe	
–  All	in	favor,	no	against	

•  20+	new	issues,	several	bugs	found	o_O	
•  To-do	before	final	submission	

–  Bugs	will	be	fixed	
–  Docs	will	be	further	improved	
–  Some	methods	will	change	names	for	better	consistency	
–  Default	backend	will	not	support	weighted	fills	anymore	
–  Features	to	add	

•  Profile	support	
•  Algorithm	support	library	
•  Support	for	std::vector,	std::array,	std::map	as	storage	backends	
•  Controlled	access	to	private	data	(for	external	serialization	code,	etc.)	

~				~	

12	

Generalized histogram
•  Traditional	histogram	only	accepts	numbers	
•  Boost.histogram	can	accept	any	type:	numbers,	strings,	

user	types...	
–  User	needs	to	provide	specialized	axis	type	
–  Built-in	axis	types	templated	to	handle	many	possibilities	
	

•  Unify	histograms,	weighted	histograms,	and	profiles	
–  Use	freedom	of	specializing	counter	types	
–  Histograms:	N	

•  Semantics	handled	by	standard	integral	types	
–  Weighted	histograms:	Σw,	Σw2	

•  Semantics	handled	by	built-in	weight_counter	type	
–  Profiles:	N,	Σx,	Σx2	

•  Semantics	will	be	handled	by	built-in	profile_counter	type	
–  Should	allow	arbitrary	Boost.Accumulators	as	counters	

13	

Summary and Outlook
•  boost.histogram	
– Header-only	C++11,	only	Boost	as	dependency	
–  Source:	https://github.com/hdembinski/histogram	
– Docs:	http://hdembinski.github.io/histogram/doc/html	

•  histogram-python	
– Will	follow	once	boost.histogram	is	complete	
– Will	use	pybind11	and	copy	of	required	Boost	headers	
(no	full	Boost	installation	required)	

–  Source:	https://github.com/hdembinski/histogram-python	
–  Contributions	&	collaboration	welcome	

•  Optional	hdf5	serialization	wanted	
•  Platform-independent	binary	pickle?	

14	

Backup

15	

Python example
import	histogram	as	bh	
import	numpy	as	np	
h	=	bh.histogram(
				bh.axis.regular(10,	0.0,	5.0,	"radius",	uoflow=False),	
				bh.axis.circular(4,	0.0,	2	*	np.pi,	"phi")	
)	
x	=	np.random.randn(1000)	#	generate	x	
y	=	np.random.randn(1000)	#	generate	y	
radius	=	(x	**	2	+	y	**	2)	**	0.5	
phi	=	np.arctan2(y,	x)	
	
h(radius,	phi)	
	
count_matrix	=	np.asarray(h)	#	access	histogram	counts	(no	copy)	
	
print(count_matrix)	
#	program	output:		
#	[[37	26	33	37]	
#		[60	69	76	62]	
#		...	
#		[0	1	0	0]	
#		[0	0	0	0]]	

Based	on	former	Python	bindings	

