Conventional accelerators and their limits

Massimo.Ferrario@LNF.INFN.IT

SCENA DA RIPRENDERE

$E=10 \mathrm{keV}$

The Chromatron

The physics of beams applied equally well to the electrons that transmitted sitcoms and to those that revealed the existence of quarks. Physicists readily adapted their expertise to improving broadcasts and sets.

Ernest Lawrence founded a television "start-up" company (Chromatic) that employed dozens of physicists, including two future Nobel laureates-Luis Alvarez and Edwin McMillan.

Accelerators installed worldwide

> -Accelerators for Americas Future Report, pp. 4, DoE, USA, 2011

Accelerators installed worldwide

-Accelerators for Americas Future
Report, pp. 4, DoE, USA, 2011

Some application

The Beam Business

Figure 3. Deep, precision industrial welding of metals is done by high-energy-density electron beams. The beam is scanned along the joint to be welded. When it strikes the metal, the resultant heat instantly vaporizes the metal to form a channel as the beam penetrates into the work piece. Molten material flows around the hole and solidifies to form the weld. The method can produce welds with depth-towidth ratios up to $25: 1$. (Drawing courtesy of PTR-Precision Technologies, Enfield, CT.)

Medical Applications

Area	Application	Beam	Accelerator	Beam ener- gy/MeV	Beam current// mA	Number
Medical	Cancer therapy	e	linac	$4-20$	10^{-2}	>14000
	P	cyclotron, synchrotron	250	10^{-6}	60	
	C	synchrotron	4800	10^{-7}	10	
	Radioisotope production	P	cyclotron	$8-100$	1	1600

National Security

Cultural Heritage

Why is an accelerator under the Louvre museum?

AGLAE, Accélérateur Grand Louvre d'Analyse Élémentaire in Paris, is the world's only accelerator facility fully dedicated to the study and investigation of works of art and archeological artifacts. It serves more than 1200 French museums. The 4 -million-electronvolt proton beam delicately probes a large variety of materials: jewels, ceramics, glass, alloys, coins and statues, as well as paintings and drawings. These investigations provide information on the sources of the materials, the ancient formulas used to produce them, and the optimal ways to preserve these treasures.

24
APPUCATIONS

The Story of Ishtar

In 1863, while excavating a tomb from the ancient Parthian civilization in Mesopotamia (200 BC 200 AD), an amateur archeologist who was the French consul in Baghdad discovered this 5-inchtall alabaster figurine representing the goddess ishtar. He donated it to the Louvre. Recently a Louvre curator asked the AGLAE team to analyze the figurine's red eyes and red navel. The inlays turned out to be exquisite rubies, a great mystery since rubies are only found in remote lands like India or Southest Analy Ansis of rubies with town provente from Paris jewelers rield known provenance from Paris , trace-element fingerprints showing that Ishtar's rubies originated in Burma - testifying to an unreported trade network (see map), perhaps by ship, between Babylon and Southeast Asia.
 A

Area	Application	Beam	Accelerator	Beam energy/MeV	$\begin{array}{\|c\|} \hline \text { Beam } \\ \text { current/ } \\ \mathrm{mA} \end{array}$	Number
Medical	Cancer therapy	e	linac	4-20	10-2	>14000
		p	cyclotron, synchrotron	250	10^{-6}	60
		C	synchrotron	4800	10^{-7}	10
	Radioisotope production	p	cyclotron	8-100	1	1600
Industrial	Ion implantation	B, As,	electrostatic	<1	2	>11000
	Ion beam analysis	p, He	electrostatic	<5	10^{-4}	300
	Material processing	e	electrostatic, linac, Rhodatron	s10	150	7500
	Sterilisation	e	electrostatic, linac, Rhodatron	s10	10	3000
Security	X-ray screening of cargo	e	linac	4-10	?	100?
	Hydrodynamic testing	e	linear induction	10-20	1000	5
Synchrotron light sources	Biology, medicine, materials science	e	synchrotron, linac	500-10000		70
Neutron scattering	Materials science	p	cyclotron, synchrotron, linac	600-1000	2	4
Energy fusion	Neutral ion beam heating	d	electrostatic	1	50	10
	Heavy ion inertial fusion	$\begin{aligned} & \mathrm{Pb}, \\ & \mathrm{Cs} \end{aligned}$	Induction linac	8	1000	Under development
	Materials studies	d	linac	40	125	Under development
Energy fission	Waste burner	p	linac	600-1000	10	Under development
	Thorium fuel amplifier	p	linac	600-1000	10	Under development
Energy -bio-fuel	Bio-fuel production	e	electrostatic	5	10	Under development
Environmental	Water treatment	e	electrostatic	5	10	5
	Flue gas treatment	e	electrostatic	0.7	50	Under development

Synchrotron Radiation

GE Synchrotron New York State

First light observed 1947

$$
P_{\gamma}=\frac{c C_{\gamma}}{2 \pi} \cdot \frac{E^{4}}{\rho^{2}}
$$

Laboratory frame

Synchrotron Radiation

A Free Electron Laser (FEL) is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

distance

$$
\lambda_{\text {rad }} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \vartheta^{2}\right)
$$

(Tunability - Harmonics)

Free Electron Lasers

Ultra-precise microscopy

- Probing particles are required for studies of the elementary constituents
- The associated de Broglie wavelength λ of a probing particle defines the minimum object size that can be resolved.

$$
\lambda=\frac{h}{p}=h \times \frac{c}{E} \quad \text { with }\left\{\begin{array}{l}
h=4 \times 10^{-15} \mathrm{eVs} \quad(\text { Plank constant) } \\
p=\text { momentum, } E=\text { energy }
\end{array}\right.
$$

Resolving Smaller Objects Requires Higher Momentum Probe Particles

Example of probe wavelength

- electrons with $p=1 \mathrm{keV} / \mathrm{c} \Rightarrow /=\mathrm{h} / \mathrm{p}=4 \times 10^{-12} \mathrm{~m}$
- photons with $E=1 \mathrm{keV} \Rightarrow I=h \times c / E \sim 1.2 \times 10^{-9} \mathrm{~m}$.
\rightarrow electrons have ~ 300 times better resolution than photons (electron-microscopy!)

Typical microscopic sizes

- Atom $10^{-10} \mathrm{~m}$
- Nucleus $10^{-14} \mathrm{~m}$
- Proton $10^{-15} \mathrm{~m}$
- Quark $10^{-19} \mathrm{~m}$

Accelerator limitations and steps forward

The Livingstone's diagram

In 1950 Livingstone plotted the

 accelerator energy expressed in a semilogarithmic scale as a function of the year of construction observing a linear growth.The energy increase by a factor 33 every decade, mostly due to discoveries and technological advances.

Historical Milestones

- 1900 to 1925 radioactive source experiments à la Rutherford -> request for higher energy beams;
- 1928 to 1932 electrostatic acceleration ->
- Cockcroft \& Walton * \rightarrow - voltage multiplication using diodes and oscillating voltage (700 kV); * Nobel 1951
- Van der Graaf -> voltage charging through mechanical belt (1.2 MV);
- 1928 resonant acceleration -> Ising establish the concept, Wideroe builds the first linac;
- 1929 cyclotron ->
- small prototype by Livingstone (PhD thesis), large scale by Lawrence**; ** Nobel 1939
- 1942 magnetic induction \rightarrow Kerst build the betatron:
- 1944 synchrotron \rightarrow MacMillan, Oliphant and Veksel invent the RF phase stability (longitudinal focusing):
- 1946 proton linac \rightarrow Alvarez build an RF structure with drift tubes (progressive wave in 2π mode);
- 1950 strong focusing \rightarrow Christofilos patent the alternate gradient concept (transverse strong focusing):
- 1951 tandem -> Alvarez upgrade the electrostatic acceleration concept and build a tandem;
- 1955 AGS \rightarrow Courant, Snider and Livingstone build the alternate gradient Cosmotron in Brookhaven;
- 1956 collider \rightarrow Kerst discuss the concept of colliding beams:
- 1961 e $^{+} e^{-}$collider \rightarrow Touschek invent the concept of particle-antiparticle collider:
- 1967 electron cooling -> Budker proposes the e-cooling to increase the proton beam density;
- 1968 stochastic cooling -> *** Nobel 1984
- Van der Meer*** proposes the stochastic cooling to compress the phase space;
- 1970 RFQ -> Kapchinski \& Telyakov build the radiofrequency quadrupole;
- 1980 to now superconducting magnets $->$ developed in various laboratories to increase the beam energy;
- 1980 to now superconducting RF \rightarrow developed in various lab to increase the RF gradient.

Accelerator Configurations

Electrostatic Accelerator: Van de Graff

R.J. Van de Graaf

7 MV Van de Graaf at MIT (1933)

- Electric charges are transported mechanically on an insulating belt
- Stable, continuous beams, practical limit 10-15 MV

Possible Higher energy DC accelerator?

Forbidden by Maxwell

$$
\nabla \times \mathbf{E}=-\frac{d \mathbf{B}}{d t}
$$

or in integral form

$$
\oint_{C} \mathbf{E} \cdot d \mathbf{s}=-\frac{\partial}{\partial t} \int \mathbf{B} / \mathbf{n} d a
$$

\therefore There is no acceleration without time-varying magnetic flux

$$
\Delta \mathrm{V}_{\mathrm{T}}=0
$$

B can vary in a RF cavity

$$
\begin{aligned}
& E_{z}=E_{0} J_{0}\left(k_{r} r\right) \cos \omega t \\
& B_{\theta}=-\frac{E_{0}}{c} J_{1}\left(k_{r} r\right) \sin \omega t
\end{aligned}
$$

Note that inside the cavity $\mathbf{d B} / \mathbf{d t} \neq 0$

However,

Synchronism condition:

$$
\Delta \tau_{\mathrm{rev}}=N / f_{\mathrm{rf}}
$$

The Lawrence Cyclotron

The Cyclotron concept

Cyclotron frequency

$$
\begin{aligned}
& \dot{p}_{x}=m \dot{v}_{x}=e v_{y} B_{z} \\
& \dot{p}_{y}=m \dot{v}_{y}=-e v_{x} B_{z} \\
& v_{x}(t)=v_{0} \cos \left(\omega_{z} t\right) \\
& v_{y}(t)=v_{0} \sin \left(\omega_{z} t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{v}_{x}+\frac{e^{2}}{m^{2}} B_{z}^{2} v_{x}=0 \\
& \ddot{v}_{y}+\frac{e^{2}}{m^{2}} B_{z}^{2} v_{y}=0
\end{aligned}
$$

- Cyclotron frequency

$$
\begin{aligned}
\omega=\frac{e}{m} B_{z} & \forall \text { Valid only for non relativistic case m constant } \\
& \\
& \Rightarrow=>m(E) \text { increases } \\
& \gg \text { Synchro-cyclotron -> reduce } \omega(E) \\
& =>\text { Iso-cyclotron ->increase } B(E) \text { to keep } \omega \text { const }
\end{aligned}
$$

- Not dependent on the particle velocity

Relativistic particles

- Cyclotrons increase the energy of the particles by the same amount of energy at each turn.
- At low energy, the particles cross the gap at fixed frequency.
- At higher energy when relativistic corrections start to matter, the frequency at which they cross the gaps starts to decrease (the particles travel at the same speed $\sim c$ but follow a longer path).
- This can be addressed by varying the drive frequency but not all particles in the cyclotron are nearly at the same energy.
- The "classic" cyclotron is limited to about 20 MeV mainly due to the relativistic mass increasing

250 MeV proton cyclotron (ACCEL/Varian)

The Synchrotron concept

The main principle is to keep separated the bending and focusing devices (magnets of various types) from the ones that accelerates (resonant cavities).

There is main difference from cyclotrons: the particles always ride on the same orbit. Therefore:

- the cavities field must be synchronous with particle crossing and
- the bending magnet field must change in order to keep constant the radius of curvature.

Phase stability and longitudinal focusing

- In a certain energy range, acceleration by RF field results in early arrival of particle at next turn: for stability, this particle should undergo less acceleration
- Operating point P2 is unstable
- Late particle N2 sees lower acceleration and gets even later
- Early particle M2 sees higher acceleration and gets even earlier
- Operating point P1 is stable

Weak focusing and transverse stability

to get vertical stability, the bending field should decrease with ρ, as in cyclotrons,
to get horizontal stability the the decrease of B with ρ should be moderate, so that, for $\rho>\rho_{0}$, the Lorenz force exceeds the centripetal force.

$B_{y}=B_{0}\left(\frac{\rho_{0}}{\rho}\right)^{n} \quad$ guiding field
$n=-\frac{\rho}{B_{y}}\left(\frac{\delta B_{y}}{\delta \rho}\right)_{\rho=\rho_{0}}^{\quad \text { field index }}$
centripetal force \leq Lorenz force

$$
\frac{m v^{2}}{\rho}=\frac{m v^{2}}{\rho_{0}+x} \approx \frac{m v^{2}}{\rho_{0}}\left(1-\frac{x}{\rho_{0}}\right) \leq e v B_{y}=e v B_{0}\left(\frac{\rho_{0}}{\rho_{0}+x}\right)^{n} \approx e v B_{0}\left(1-n \frac{x}{\rho_{0}}\right)
$$

horizontal stability $\Rightarrow n \leq 1$
weak focusing

$$
\text { vertical stability } \quad \Rightarrow n>0
$$

From Weak focusing To Strong Focusing

* The principle of weak focusing has one serious drawback: when the trajectory oscillation wavelength is larger than the circumference of the machine one gets large deviations from the orbit if the circumference is large.
- The magnet apertures must be very big.
- The apertures can be drastically reduced if one applies strong focusing (n much larger than 1).
- This is impossible in a machine which has a guide and focusing field independent of the azimuthal angle, since in that case the condition $0<\mathrm{n}<1$ has to hold, as we have just shown.
- It is, however, possible if we split up the machine into a series of magnetic sectors in which in alternating order the magnetic field increases strongly with increasing radius ($n \ll 1$) or decreases strongly with increasing radius.

MAGNETIC QUADRUPOLE

Quadrupoles are used to focalize the beam in the transverse plane. It is a 4 poles magnet:
$\Rightarrow B=0$ in the center of the quadrupole
\Rightarrow The \mathbf{B} intensity increases linearly with the off-axis displacement.
\Rightarrow If the quadrupole is focusing in one plane is defocusing in the other plane

$$
\left\{\begin{array} { l }
{ B _ { x } = G \cdot y } \\
{ B _ { y } = G \cdot x }
\end{array} \Rightarrow \left\{\begin{array}{l}
F_{y}=q v G \cdot y \\
F_{x}=-q v G \cdot x
\end{array}\right.\right.
$$

$G=$ quadrupole gradient $\left[\frac{T}{m}\right]$

Electromagnetic quadrupoles $\mathrm{G}<50-100 \mathrm{~T} / \mathrm{m}$

$$
\frac{F_{B}}{F_{E}}=v \Rightarrow\left\{\begin{array}{l}
F_{B}(1 T)=F_{E}\left(300 \frac{M V}{m}\right) @ \beta=1 \\
F_{B}(1 T)=F_{E}\left(3 \frac{M V}{m}\right) @ \beta=0.01
\end{array}\right.
$$

Alternate Gradient Focusing

Idea: cut the arc sections in focusing and defocusing elements

Strong focusing

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

Horizontal and vertical focusing for a large range of $f_{1} f_{2}$ and d

- separated functions: the alternate gradient is made with quadrupoles of opposite focusing strength
- combined functions: the alternate gradient is made with dipoles with radial shape of opposite sign

Examples

$$
\begin{aligned}
& \text { normalized quadrupole gradient } K=\frac{e B^{\prime}}{p}=\frac{B^{\prime}}{B \rho} \Rightarrow K\left[m^{-2}\right]=0.2998 \frac{B^{\prime}\left[\mathrm{Tm}^{-1}\right]}{p[G e V / c]} \\
& \text { quadrupole strength } \frac{1}{f}=K L
\end{aligned}
$$

Ring	$\mathrm{p}[\mathrm{GeV} /$ $c]$	B_{0} $[\mathrm{~T}]$	ρ $[\mathrm{m}]$	$\mathrm{B} \mathrm{\rho}$ $[\mathrm{Tm}]$	$1 / \rho^{2}\left[\mathrm{~m}^{-2}\right]$ weak focus	$L_{\text {quad }}$ $[\mathrm{m}]$	$B^{\prime}[\mathrm{T} /$ $\mathrm{m}]$	K $\left[\mathrm{m}^{-2}\right]$
CERS	5.2	0.18	96.4	17.3	10^{-4}	0.5	5	0.298
Tevatron	1000	4.4	758	3335	$1.7 \cdot 10^{-6}$	1.7	76	0.0228

weak focussing, combined function magnets

strong focussing, combined function magnets

strong focussing, separated function magnets

Synchrotron

- Increasing the energy, and so the radius, the size and the cost of the magnet are unaffordable
- The solution is to keep the radius constant and to ramp B
- The magnetic field is generated by small magnetic element around the ring and the central part is not needed anymore

$$
\frac{1}{R}=\frac{e B}{p}
$$

Maximum energy

$$
\begin{aligned}
& \Delta E_{\text {beam }}=e U_{\max } \sin \Psi_{0}-\Delta E_{\text {loss }} \\
& \Delta E_{\text {loss }}=\frac{4}{3} \pi \alpha \hbar c \frac{\gamma^{4}}{\rho}
\end{aligned}
$$

- The energy loss is very important mainly for electrons
- It is not possible to accelerate starting to $\mathrm{E}=0 \mathrm{MeV}$
- So a linac is needed in order to fill the ring
- For more stable system another rings is needed (booster)

Fermi's Globatron: ~5000 TeV Proton beam 1954 the ultimate synchrotron

$\mathrm{B}_{\text {max }} 2$ Tesla $\rho 8000 \mathrm{~km}$ fixed target 3 TeV c.m. 170 G\$ 1994

From Fixed Target to Colliders

- Relativistic invariant

$$
\begin{aligned}
& (\Sigma m)^{2} c^{4}=(\Sigma E)^{2}-(\Sigma p)^{2} c^{2} \\
& 4 m^{2} c^{4}=\left(E_{A}+E_{B}\right)^{2}-\left(\overrightarrow{p_{A}}+\overrightarrow{p_{B}}\right)^{2} c^{2}
\end{aligned}
$$

- In the laboratory frame
- Let E^{*} be the total energy available in the collision
- In the center-of-mass frame

$$
\begin{aligned}
& \overrightarrow{p^{*}}=\overrightarrow{p_{A}} *+\overrightarrow{p_{B}} * \equiv 0 \\
& 4 m^{2} c^{4}=E^{* 2} \\
& E^{* 2}=\left(E_{A}+E_{B}\right)^{2}-\left(\overrightarrow{p_{A}}+\overrightarrow{p_{B}}\right)^{2} c^{2}
\end{aligned}
$$

- Fixed-target

$$
\begin{aligned}
& p_{B}=0 ; E_{B}=m c^{2} \\
& E^{* 2}=E_{A}{ }^{2}-p_{A}{ }^{2} c^{2}+m^{2} c^{4}+2 E_{A} m c^{2} \\
& E^{* 2}=2 m^{2} c^{4}+2 E_{A} m c^{2} \approx 2 E_{A} m c^{2} \\
& E^{*} \approx \sqrt{2 E_{A} m c^{2}}
\end{aligned}
$$

- Head-on collision

$$
E^{*}=E_{A}+E_{B}
$$

Touschek's Anello Di Accumulazione (ADA) 1943 Wideroe idea 1961 the first e+e-Collider ADA

Fixed Target equivalent accelerator energy

(The Greisen-Zatsepin-Kuzmin limit (GZK limit) is a theoretical upper limit on the energy of cosmic ray protons travelling from other galaxies through the intergalactic medium to our galaxy. The limit is set by slowing-interactions of the protons with the microwave background radiation over long distances (~ 160 million light-years)).

Current and future colliders have c.o.m energies fixed above that of the Fermi Machine, thanks to the colliding beam technique and the development of superconducting magnets.

LHC few data

LHC (Large Hadron Collider) - a brief history

14 TeV proton-proton accelerator-collider built in the LEP tunnel
 Lead-Lead (Lead-proton) collisions

1983	: First studies for the LHC project
1988	: First magnet model (feasibility)
1994	: Approval of the LHC by the CERN Council
1996-1999	: Series production industrialisation
1998	: Declaration of Public Utility \& Start of civil engineering
1998-2000	Placement of the main production contracts
2004	: Start of the LHC installation
2005-2007	Magnets Installation in the tunnel
2006-2008	Hardware commissioning
2008-2009	Beam commissioning and repair
2009-2035	Physics exploitation

~ 30 years between the first studies and the start for the Physics

What next?

Hawking: the Solartron

Towards the Planck scale

Without further novel technology, we will eventually need an accelerator as large as Hawking expected.
"The Universe in a Nutshell", by Stephen William Hawking, Bantam, 2001

"How to advance?"

Hadron (p) circular collider

Lepton (e-,e+) circular collider

Increase mass of acc. particle (muon)

$$
p \propto E_{0} \cdot \sqrt[4]{\rho \cdot U_{0} \longleftarrow} \begin{aligned}
& \text { Increase supplied RF voltage } \\
& \text { (FCC-ee) } \\
& \text { Increase radius }=\text { size (FCC-ee) }
\end{aligned}
$$

Lepton (e-e+) linear collider
$p=L \cdot G_{\text {acc }}^{\gtrless} \quad$ Increase accelerating gradient
(a) Pushing existing technology (ILC, CLIC)
(b) New regime of ultra-high gradients (plasma, dielectric accelerators)

Today FCC (Future Circular Collider) study

International collaboration to study:

- pp-collider (FCC-hh)
- $e^{+} e^{-}$collider (FCC-ee) as potential intermediate step
- p-e (FCC-he)
as an option

$$
\begin{aligned}
& \sim 16 \mathrm{~T} \Rightarrow 100 \mathrm{TeV} p p \text { in } 100 \mathrm{~km} \\
& \sim 20 \mathrm{~T} \Rightarrow 100 \mathrm{TeV} p p \text { in } 80 \mathrm{~km} \\
& \hline
\end{aligned}
$$

FCC: 80-100 km infrastructure in Geneva area

A Possible Middle Step for AAC towards Colliders Plasma Based Injector for 100km CEPC

> CEPC (Circular Electron Positron Collider) is a major high energy physics plan under strong promotion in China to build a 100km circular machine for a Higgs Factory.
$>$ A high energy injector (40 GeV level) is needed to inject e+/e- beams into the main ring.
> Plasma based schemes (PWFA) may provide a novel and cost effective solution for this injector.
> A joint research group of Tsinghua Univ. and IHEP has been formed since 2017 to study

Circular Higgs Factory (Phase I) + SppC (Phase II) at same tunnel
 the feasibility of using plasma based acceleration as a novel solution for CEPC injector.

A preliminary design of CEPC plasma based high energy injector

> Driver/trailer beam generation through Photo-injector
> HTR PWFA with good stability (single stage TR=3-4, Cascaded stage 6-12, high efficiency)
> Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)

"How to advance?"

Hadron (p) circular collider

$$
\begin{aligned}
& p=e \cdot R \cdot B_{y} \pi \quad \begin{array}{l}
\text { Increase bending field } \\
\text { SC bend magnet work (FCC-hh) }
\end{array} \\
& \text { Increase radius }=\text { size (FCC-hh) }
\end{aligned}
$$

Lepton (e-,e+) circular collider

Increase mass of acc. particle (muon)

$$
p \propto E_{0} \cdot \sqrt[4]{\rho \cdot U_{0} \longleftarrow} \begin{aligned}
& \text { Increase supplied RF voltage } \\
& \text { (FCC-ee) } \\
& \text { Increase radius }=\text { size (FCC-ee) }
\end{aligned}
$$

Lepton (e-e e+) linear collider

Increase length (ILC, CLIC)

Increase accelerating gradient
(a) Pushing existing technology (ILC, CLIC)
(b) New regime of ultra-high gradients (plasma, dielectric accelerators)

Muon Collider

"How to advance?"

Hadron (p) circular collider

Lepton (e-e +) linear collider

Increase length (ILC, CLIC)

Increase accelerating gradient
(a) Pushing existing technology (ILC, CLIC)
(b) New regime of ultra-high gradients (plasma, dielectric accelerators)

Lawson-Woodward Theorem

(J.D. Lawson, IEEE Trans. Nucl. Sci. NS-26, 4217, 1979)

The net energy gain of a relativistic electron interacting with an electromagnetic field in vacuum is zero.

The theorem assumes that
(i) the laser field is in vacuum with no walls or boundaries present,
(ii) the electron is highly relativistic ($\mathrm{v} \approx \mathrm{c}$) along the acceleration path,
(iii) no static electric or magnetic fields are present,
(iv) the region of interaction is infinite,

$$
\begin{aligned}
\Delta \mathcal{E}=e \int_{-\infty}^{\infty} \boldsymbol{v} \cdot \boldsymbol{E}(\boldsymbol{r}(t), t) d t, & \boldsymbol{r}(t)=\boldsymbol{r}_{0}+\boldsymbol{v} t, \\
\boldsymbol{E}(\boldsymbol{r}, t)=\int d^{3} k \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}, & \omega=c k . \\
\Delta \mathcal{E} & =e \boldsymbol{v} \cdot \int_{-\infty}^{\infty} d t \int d^{3} k \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot\left(\boldsymbol{r}_{0}+\boldsymbol{v} t\right)-i \omega t} \\
& =2 \pi e \int d^{3} k \boldsymbol{v} \cdot \tilde{\boldsymbol{E}}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}_{0}} \delta(\omega-\boldsymbol{k} \cdot \boldsymbol{v}) \equiv 0
\end{aligned}
$$

$$
\omega-\boldsymbol{k} \cdot \boldsymbol{v}=c k(1-\beta \cos \alpha)>0, \Rightarrow \delta \equiv 0
$$

Reflection of plane waves

Plane wave reflected by a perfectly conducting plane

$$
\sigma=\infty
$$

In the plane xz the field is given by the superposition of the incident and reflected wave:

$$
\begin{gathered}
E(x, z, t)=E_{+}\left(x_{o}, z_{o}, t_{o}\right) e^{i \omega t-i k \xi}+E_{-}\left(x_{o}, z_{o}, t_{o}\right) e^{i \omega t-i k \xi^{\prime}} \\
\zeta=z \cos \theta-x \sin \theta \quad \zeta^{\prime}=z \cos \theta^{\prime}+x \sin \theta^{\prime}
\end{gathered}
$$

And it has to fulfill the boundary conditions (no tangential E-field)

Reflectiono plane waves (a irst found Eny vaue p oflem)

Taking into account the boundary conditions the longitudinal component of the field becomes:

$$
E_{z}(x, z, t)=\left(E_{+} \sin \theta\right) e^{i \omega t-i k(z \cos \theta-x \sin \theta)}-\left(E_{+} \sin \theta\right) e^{i \omega t-i k(z \cos \theta+x \sin \theta)}
$$

$$
=2 i E_{+} \sin \theta \sin (k x \sin \theta) e^{i \omega t-i k z \cos \theta}
$$

Put a metallic boundary where the field is zero at a given distance from the wall.

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is cut-off frequency.

$$
v_{\phi z}=\frac{\omega}{k_{z}}=\frac{\omega}{k \cos \theta}=\frac{c}{\cos \theta}>c \longrightarrow \begin{aligned}
& \text { It can not be used as it is } \\
& \text { for particle acceleration }
\end{aligned}
$$

Conventional RF accelerating structures

Breakdown limits metal:

$$
E_{s}=220(f[\mathrm{GHz}])^{1 / 3} \mathrm{MV} / \mathrm{m}
$$

High field ->Short wavelength->ultra-short bunches-> low charge

X-band RF structures best performances

CLIC ... a future Linear e+/ e- Accelerator

Avoid bending magnets => no synchrotron radiation losses => energy gain has to be obtained in ONE GO

ILC - International Linear Collider

ILC (International Linear Collider) $\mathbf{e}^{+} \mathbf{e}^{-}$

- 11 km SC linacs operating at $31.5 \mathrm{MV} / \mathrm{m}$ for 500 GeV
- Centralized injector
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability
$\sim 31 \mathrm{Km}$

Schematic Layout of the 500 GeV Machine
Documented in Reference Design Report

Next High Gradient Options

- RF accelerating structures, from X-band to K-band $=>100 \mathrm{MV} / \mathrm{m}<\mathrm{E}_{\text {acc }}<1 \mathrm{GV} / \mathrm{m}$

- Dielectrict structures, laser or particle driven $=>1 \mathrm{GV} / \mathrm{m}<\mathrm{E}_{\mathrm{acc}}<5 \mathrm{GV} / \mathrm{m}$

- Plasma accelerator, laser or particle driven $=>1 \mathrm{GV} / \mathrm{m}<\mathrm{E}_{\mathrm{acc}}<100 \mathrm{GV} / \mathrm{m}$

Beam Quality

Future accelerators require high quality beams:
==> High Luminosity \&e High Brightness
==> High Bnergy \& Low Bnergy Spread
-N of particles per pulse => 10^{9}
-High rep. rate $f_{r}=>$ bunch trains

$\mathrm{L}=\frac{N_{e+} N_{e-} f_{r}}{4 \pi \sigma_{x}^{*} \sigma_{y}^{*}}$

-Small spot size => low emittance

-

-Short pulse (ps to fs)
-Little spread in transverse momentum and angle => low emittance

Trace space of an ideal beam

Trace space of non laminar beam

In a system where all the forces acting on the particles are linear (i.e., proportional to the particle's displacement x from the beam axis), it is useful to assume an elliptical shape for the area occupied by the beam in $\mathrm{x}-\mathrm{x}$ ‘ trace space.

$$
\ddot{x}+k^{2} x=0
$$

\rightarrow Emittance Concept

Geometric emittance:
 ε_{g}

Ellipse equation: $\quad \gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\varepsilon_{g}$
Twiss parameters: $\beta \gamma-\alpha^{2}=1 \quad \beta^{\prime}=-2 \alpha$ Ellipse area:

$$
A=\pi \varepsilon_{g}
$$

Liouville theorem: the density of particles n, or the volume V occupied by a given number of particles in phase space $\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}, \mathrm{y}, \mathrm{p}_{\mathrm{y}}, \mathrm{z}, \mathrm{p}_{\mathrm{z}}\right)$ remains invariant under the effect of conservative forces.

$$
\frac{d n}{d t}=0
$$

It hold also in the projected phase spaces $\left(\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right),\left(\mathrm{y}, \mathrm{p}_{\mathrm{y}}\right)\left(, \mathrm{z}, \mathrm{p}_{\mathrm{z}}\right)$ provided that there are no couplings

Fig. 17: Filamentation of mismatched beam in non-linear force

For an effective transport of a beam with finite emittance is mandatory to make use of some external force providing beam confinement in the transport or accelerating line.

Space Charge Induced Instabilities

Beam-Beam effect

the colliding bunches influence each other
=> change the focusing properties of the ring !!
for LHC a strong non-linear defoc. effect

court. K. Schindl

most simple case: linear beam beam tune shift

$$
\Delta Q_{x}=\frac{\beta_{x}^{*} * r_{p} * N_{p}}{2 \pi \gamma_{p}\left(\sigma_{x}+\sigma_{y}\right) * \sigma_{x}}
$$

\Rightarrow puts a limit to N_{p}
Eigenfrequency of the paticles is changed due to the beam beam interaction
Particles are pushed onto resonances and are lost.

Wake Field Induced Instabilities

Bunched beam - Circular Perfectly Conducting Pipe

- Beam at Centre- Static Approximation $\gamma \rightarrow \infty$

$$
\begin{array}{lll}
E_{r}=\frac{I}{2 \pi \varepsilon_{o} a^{2} v} r & \text { for } r \leq a \\
E_{r}=\frac{I}{2 \pi \varepsilon_{o} v} \frac{l}{r} & \text { for } r>\boldsymbol{a}
\end{array}
$$

$$
B_{\vartheta}=\frac{\beta}{c} E_{r}
$$

Circular Perfectly Conducting Pipe with Transition

There is a longitudinal $\mathrm{E}_{\mathrm{z}}(\mathrm{r}, \mathrm{z})$ field in the transition and a test particle experience a voltage given by:

$$
V=-\int_{0}^{L} E_{z}(r, z) d z=-(\varphi(r, L)-\varphi(r, 0))=-\frac{I}{2 \pi \varepsilon_{o} v} \ln \frac{d}{b}
$$

decelerating if $\mathrm{d}>\mathrm{b}$

$$
P_{b}=V I=\frac{I^{2}}{2 \pi \varepsilon_{o} v} \ln \frac{d}{b} \quad \text { Power lost by the beam }
$$

For $d>b$ the power is deposited to the energy of the fields: moving

 from left to right the beam induces the fields in the additional space available

The additional power passing through the right part of the beam pipe is obtained by integrating the Poynting vector throught the sourface $\quad \Delta S=\pi\left(d^{2}-b^{2}\right)$

$$
P_{e m}=\int_{\Delta S}\left(\frac{1}{\mu} \vec{E} \times \vec{B}\right) \cdot d \vec{S}=\int_{b}^{d} \frac{E_{r} B_{\vartheta}}{\mu} 2 \pi r d r=\frac{I^{2}}{2 \pi \varepsilon_{o} v} \ln \frac{d}{b}
$$

Notice that if $\mathrm{d}<\mathrm{b}$ the beam gains energy. If $\mathrm{d}-->\infty$ the power goes to infinity, such an unphysical result is nevertheless consistent with the original assumption of an infinite energy beam ($\gamma->\infty$).

Reflected and Diffracted fiels

CST MICROWAVE STUDIO®

Wake Potentials

there can be two effects on the test charge :

1) a longitudinal force which changes its energy,
2) a transverse force which deflects its trajectory.

If we consider a device of length L :
the Energy Gain is:

$$
U=\int_{0}^{L} F_{z} d s
$$

$$
\text { the Transverse Deflecting Kick is: } \quad \boldsymbol{M}=\int_{0}^{L} \mathbf{F}_{\perp} d s
$$

These quantities, normalised to the charges, are called wake-potentials and are both function of the distance z .

Note that the integration is performed over a given path of the trajectory.

Longitudinal wake potential [V/C]

$$
w_{\prime \prime}=-\frac{U}{q_{0} q}=-\frac{V}{q_{o}}
$$

Energy Loss

Transverse wake potential [V/Cm]

$$
\boldsymbol{w}_{\perp}=\frac{1}{r_{o}} \frac{\boldsymbol{M}}{q_{o} q}
$$

Transverse Kick

The sign minus in the longitudinal wake-potential means that the test charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is defocusing.

Longitudinal Wakefields of RF Structures

SLAC S-band:
$a \approx 11.6 \mathrm{~mm}$
$\gamma \approx 29.2 \mathrm{~mm}$
$p \approx 35.0 \mathrm{~mm}$

$$
s_{0} \approx 0.41 \frac{a^{1.8} g^{1.6}}{p^{2.4}}
$$

$$
W_{/ \prime} \propto \omega^{2}
$$

Transverse Wakefields

transverse point-charge wakefield function and short-range fit:

$$
W_{x}(z) \approx A \frac{4 Z_{0} c s_{1}}{\pi a^{4}}\left[1-\left(1+\sqrt{z / s_{1}}\right) e^{-\sqrt{z / s_{1}}}\right], z<6 \mathrm{~mm}
$$

Beam Break Up

A beam injected off-center in a LINAC, because of the focusing quadrupoles, execute betatron oscillations. The displacement produces a transverse wake field in all the devices crossed during the flight, which deflects the trailing charges.

Figure 3.4. Four transverse beam profiles observed at the end of the SLAC linac are shown when the beam was carefully injected and injected with $0.2,0.5$, and 1 mm offsets. The beam sizes σ_{x} and σ_{y} are about $120 \mu \mathrm{~m}$. (Courtesy John Seeman, 1991.)

"How to advance?"

Hadron (p) circular collider

Lepton (e-e+) linear collider
$p=L \cdot G_{\text {acc }}$

Increase length (LLC, CLIC)

Increase accelerating gradient
(a) Pushing existing technology (ILC, CLIC)
(b) New regime of ultra-high gradients (plasma, dielectric accelerators)

Phenomenological Model of Accelerator costs

* Total project cost [TPC] divided into three components

$$
\operatorname{TPC}=\alpha\left(\frac{L}{10[\mathrm{~km}]}\right)^{\frac{1}{2}}+\beta\left(\frac{E}{1[\mathrm{TeV}]}\right)^{\frac{1}{2}}+\gamma\left(\frac{P}{100[\mathrm{MW}]}\right)^{\frac{1}{2}}
$$

* Civil Engineering and construction
* Accelerator components
* Facility Infrastructure
* Phenomenological formula parametrised in terms of tunnel length[L], centre-of-mass Energy[E] and total site AC power [P]

$$
\begin{aligned}
\alpha & =\$ 2 B \\
\gamma & =\$ 2 B \\
\beta & =\$ 1 \mathrm{~B} \text { (NCmagnets) } \\
\beta & =\$ 2 \mathrm{~B} \text { (SCmagnets) } \\
\beta & =\$ 8 \mathrm{~B} \text { (NCRF) } \\
\beta & =\$ 10 \mathrm{~B} \text { (SCRF) }
\end{aligned}
$$

* Coefficient beta is technology dependent

Estimated costs of future facilities

* Costs are in American accounting, i.e. including all labour costs. In European accounting this would be a factor ~2-2.5 smaller.

	$E[\mathrm{TeV}]$	$L[\mathrm{~km}]$	$P[\mathrm{MW}]$	$\alpha \beta \gamma$ TPC $[\$ \mathrm{~B}]$	Civil construction cost $[\$ \mathrm{~B}]$
$\mathrm{C} e^{+} e^{-} \mathrm{C}$	0.25	54	~ 500	10.2	4.6
FCC-ee	0.25	100	~ 300	10.9	6.3
ILC	0.5	36	163	13.1	3.8
CLIC	3	60	~ 560	23.5	4.9
μ collider	6	20	~ 230	12.9	2.8
LHC-33	33	0	~ 100	4.8	$0 ?$
SppC(China)	50	54	~ 300	25.5	4.6
FCC-pp	100	100	~ 400	30.3	6.3

These are Shiltsev's numbers, in no way approved by any of
the proponents of these machines.

* Power usage is substantial. Rate of energy usage, $\sim 1 \mathrm{~kW} /$ person.
* A small nuclear power station gives 500MW of power.

Next challenges for PWA

Size versus Energy
electron linear accelerators

