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Future accelerators require high quality beams:   
==>     High Luminosity & High Brightness
==>     High Energy & Low Energy Spread  

– Small spot size => low emittance

– N of particles per pulse => 109

– High rep. rate fr=>  bunch trains

– Little spread in transverse 
momentum and angle => low emittance

– Short pulse (ps to fs)



•  The rms emittance concept



Paraxial Ray Approximation 

In a locally Cartesian coordinate system,  we take the distance along 
the design trajectory to be z. The horizontal offset is designated by x  
and the horizontal angle is θx .  

paraxial rays => vector representations of the local trajectory which, 
by definition, have an angle with respect to a  design trajectory that is 
much smaller than unity.  
 
Trajectories of interest in beam physics are often paraxial: one must 
confine the beam inside of small, near-axis regions. 
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Trace space of an ideal laminar beam 
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Trace space laminar beam 
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Trace space of non laminar beam 



In a system where all the forces acting on the particles are linear (i.e., 
proportional to the particle’s displacement x from the beam axis), it is 
useful to assume an elliptical shape for the area occupied by the beam 
in x-x‘ trace space. 
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The action is related to the area enclosed by the phase space trajectory.  
 
 
 
 
The action is also generally known to be an adiabatic invariant, in that 
when the parameters of an oscillatory system are changed slowly, the 
action remains a constant. 
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Twiss parameters: 12 =−αβγ

Ellipse equation:
Geometric emittance:
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εg
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γx2 + 2αx $ x + β $ x 2 = εg

Ellipse area: A = πεg

!β = −2α





Phase space evolution

With space charge => no cross over



No space charge => cross over
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rms emittance 
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rms beam envelope: 
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γx2 + 2αx $ x + β $ x 2 = εrms
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σ x = x2 = βεrms    

σ x' = % x 2 = γεrms

Define rms emittance: 

such that: 
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It holds also the relation: 

Substituting             we get 
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α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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Which distribution has no correlations?
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σ xx ' = x !x = −αεrms = 0?
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εrms
2 = x2 # x 2 − x # x 2

!x =Cxn

εrms
2 =C2 x2 x2n − xn+1

2( )
When n = 1   ==>   εrms = 0

When n = 1    ==>   εrms = 0
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What does rms emittance tell us about beam phase space 
distributions under the effect of linear or non-linear forces? 

Assuming a generic            correlation of the type: 
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Constant under linear transformation only

And without acceleration:
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εn,rms = σ x
2σ px

2 −σ xpx
2 =

1
moc

x2 px
2 − xpx

2( )

Normalized rms emittance:

px = pz !x =mocβγ !xCanonical transverse momentum: 

Liouville theorem: the density of particles n, or the volume V 
occupied by a given number of particles in phase space 
(x,px,y,py,z,pz) remains invariant under conservative forces. 

Rms emittance instead is invariant only under linear forces => 
It is not a Liouvillian invariant 
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Limit of single particle emittance
Limits are set by Quantum Mechanics on the knowledge of the two 
conjugate variables (x,px). According to Heisenberg:  

This limitation can be expressed by saying that the state of a particle 
is not exactly represented by a point, but by a small uncertainty 
volume of the order of      in the 6D phase space. 
 
In particular for a single electron in 2D phase space it holds: 
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   Where       is the reduced Compton wavelength. ! c



•  The rms emittance concept
•  WARNiNG: Energy spread contribution



εn,rms =
1
moc

x2 px
2 − xpx

2( ) = x2 βγ "x( )2 − xβγ "x 2( ) = βγ εrms

Assuming small energy spread within the beam, the normalized and 
un-normalized emittances can be related by the above approximated 
relation.  

px = pz !x =mocβγ !x

This approximation that is often used in conventional accelerators 
may be strongly misleading when adopted to describe beams with 
significant energy spread, as the one at present produced by plasma 
accelerators.  

Normalized and un-normalized emittances  



When the correlations between the energy and transverse positions are 
negligible (as in a drift without collective effects) we can write:  

εn,rms
2 = β 2γ 2 x2 !x 2 − βγ

2 x !x 2

Considering now the definition of relative energy spread:  

σγ
2 =

β 2γ 2 − βγ
2

βγ
2

which can be inserted in the emittance definition to give:  

εn,rms
2 = β 2γ 2 σγ

2 x2 !x 2 + βγ
2 x2 !x 2 − x !x 2( )

Assuming relativistic electrons (β=1) we get:  

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( )



At the plasma-vacuum interface is of the same order of magnitude as for 
conventional accelerators at low energies; however, due to the rapid increase of the 
bunch size, it becomes predominant compared to the second term. 

Geometric emittance 

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013) 
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2 = γ 2 σγ
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•  The rms emittance concept
•  Energy spread contribution
•  rms envelope equation
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It holds also the relation: 

Substituting             we get 
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α,β ,γ

εrms = σ x
2σ x '

2 −σ xx '
2 = x2 "x 2 − x "x 2( )

We end up with the definition of rms emittance in terms  of the 
second moments of the distribution: 

σ x = x2 = βεrms

!σ x = x '2 = γεrms

σ xx ' = x !x = −αεrms
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1
2σ x

d
dz

x2 =
1
2σ x

2 x !x =
σ x !x

σ x

d 2σ x

dz2
=
d
dz
σ x !x

σ x

=
1
σ x

dσ x !x

dz
−
σ x !x
2

σ x
3 =

1
σ x

!x 2 + x !x( )−σ x !x
2

σ x
3 =

σ !x
2 + x !!x
σ x

−
σ x !x
2

σ x
3

Envelope Equation without Acceleration

Now take the derivatives: 

!!σ x =
σ x
2σ x '

2 −σ xx '
2

σ x
3 +
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σ x

=
εrms
2

σ x
3 +

x !!x
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And simplify: 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

We obtain the rms envelope equation in which the rms emittance 
enters as defocusing pressure like term. 
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2

σ x
3 ≈

T
V
≈ P



kBTx =m vx
2             T = 1

3
Tx +Ty +Tz( )           Ek =

1
2
m v2 =

3
2
kBT

Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and 
global  as:   

Definition of beam temperature in analogy:  

kBTbeam,x = γmo vx
2

We get: 
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2 = β 2c2 !x 2 = β 2c2σ x '

2 = β 2c2 εrms
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σ Lσ x
2



S = kN log πε( )

kBTbeam,x = γmoβ
2c2 εrms

βx



Lets now consider for example the simple case with   
describing a beam drifting in the free space.  
 
The envelope equation reduces to: 
 

x !!x = 0

σ x
3 !!σ x = εrms

2

σ o, !σ oWith initial conditions               at zo, depending on the upstream 
transport channel, the  equation has a hyperbolic solution:  
 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Beam drifting in the free space



Considering the case              (beam at waist) 
  
and using the definition  
 
the solution is often written in terms of the       function as:  
 

!σ o = 0

σ x = βεrms

This relation indicates that without any external focusing element the 
 
 beam envelope increases from the beam waist by a factor          with 
 
 a characteristic length  



For an effective transport of a beam with finite emittance is mandatory 
to make use of some external force providing beam confinement in the 
transport or accelerating line.  



At waist holds also the relation:  εrms
2 =σ o,x

2 σ o, !x
2

!σ o = 0

that leads to:  σ x
2 z( ) ≈ σ o, "x

2 z − zo( )2

εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( ) = γ 2 σγ

2σ o, !x
4 z − zo( )2 +εrms2( )

showing that beams with large energy spread an divergence 
undergo a significant normalized emittance growth even in a drift  

Migliorati et al., Phys. Rev. STAB 16, 011302 (2013) 



εn,rms
2 = γ 2 σγ

2σ x
2σ !x

2 +εrms
2( ) = γ 2 σγ

2σ o, !x
4 z − zo( )2 +εrms2( )

showing that beams with large energy spread an divergence 
undergo a significant normalized emittance growth even in a drift  

 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 

Z

<γ>ε

Simulation 
Formula 



Beam transport line simulated with TSTEP 

Beam transport line based on a  
triplet-lattice. 
Beam parameters are: 
•   Energy  350 MeV 
•   Beam divergence  1 mrad 
•   Energy spread  1% 
•   Beam spot-size 1 µm 
 
 

Keeping the beam size under  
control is possible, but normalized  
emittance grows throughout the  
beamline.   

G=265 T/m 
L=5cm 

G=-295 T/m 
L=5cm 

G=142 T/m 
L=5cm 

Δεn,rms = γ σγkqlq + "σ o( )σ o
2 +σ o "σ o



Assuming that each particle is subject only to a linear focusing  

force, without acceleration: 
 
take the average over the entire particle ensemble  

!!x + kx
2x = 0

€ 

" " σ x + kx
2σ x =

εrms
2

σ x
3

x !!x = −kx
2 x2

We obtain the rms envelope equation with a linear focusing force 
in which, unlike in the single particle equation of motion, the rms 
emittance enters as defocusing pressure like term. 

!!σ x −
x !!x
σ x

=
εrms
2

σ x
3

Envelope Equation with Linear Focusing



•  The rms emittance concept
•  Energy spread contribution
•  rms envelope equation
•  Space charge foces

OUTLINE



Space Charge: What does it mean?
The net effect of the Coulomb interactions in a multi-particle system can be 

classified  into two regimes:

1)   Collisional Regime ==> dominated by binary collisions caused by close 
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the 
particle distribution, which varies appreciably only over large distances 
compare to the average separation of the particles ==> Collective Effects
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σ x,y, z << λD
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σ x,y, z >> λD



Continuous Uniform Cylindrical Beam Model
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J =
I
πa2
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ρ =
I

πa2v
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εoE ⋅ dS = ρdV∫∫
Gauss’s law
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Bϑ =
β
c
Er
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Er =
I

2πεoa
2v
r    for   r ≤ a

Er =
I

2πεov
1
r

     for   r > a

Ampere’s law
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B ⋅ dl = µo J ⋅ dS∫∫
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Bϑ = µo
Ir

2πa2
   for    r ≤ a

Bϑ = µo
I
2πr

   for    r > a



γ= 1 γ = 5 γ = 10

L(t)
Rs(t) Δt
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Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )

€ 

Ez(0,s,γ ) =
I

2πγε0R
2βc

h s,γ( )

Bunched Uniform Cylindrical Beam Model



Fr = e Er −βcBϑ( ) = e 1−β 2( )Er =
eEr

γ 2

The attractive magnetic force , which becomes significant at high velocities, tends to 
compensate for the repulsive electric force. Therefore space charge defocusing is 
primarily a non-relativistic effect. Using R=2σx for a uniform distribution:

is a linear function of the transverse coordinate

€ 

dpr
dt

= Fr =
eEr
γ 2

=
eIr

2πγ 2ε0R
2βc

g s,γ( )

Fx =
eIx

8πγ 2ε0σ x
2βc

g s,γ( )

Lorentz Force
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β
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Er(r,s,γ ) =
Ir

2πε0R
2βc

g s,γ( )



Envelope Equation with Space Charge

!!x =
ksc s,γ( )
σ x
2 x

Single particle transverse motion: 

dpx
dt

= Fx              px= p !x = βγmoc !x

d
dt

p !x( ) = βc d
dz

p !x( ) = Fx

!!x =
Fx
βcp

Fx =
eIx

8πγ 2ε0σ x
2βc

g s,γ( )

ksc =
2I
IA
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IA =
4πεomoc

3

e



x !!x =
ksc
σ x
2 x2 =ksc

!!σ x + k
2σ x =

εn
2

βγ( )2σ x
3
+
ksc
σ x

External Focusing Forces

Space Charge De-focusing Force

Emittance Pressure

Now we can calculate the term        that enters in the envelope equation
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x " " x 
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" " σ x =
εrms

2

σ x
3 −

x " " x 
σ x

Including all the other terms the envelope equation reads:
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ρ =
βγ( )2 kscσ x

2

εn
2Laminarity Parameter: 
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" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x
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" " σ x + k2σ x =
εn
2

βγ( )2σ x
3

+
ksc
σ x

ρ>>1

ρ<<1

Laminar Beam

Thermal Beam

The beam undergoes two regimes  along the accelerator 
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ρ =
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γIAεn
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2Iσ q
2

γIAεn
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' γ 2IA
2εn

2γ 2
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γ tr =
2I
# γ IAεn

Laminarity parameter 

Transition Energy (ρ=1) 

I=100 A

I=1 kA

I=4 kA

ρ

Potential space charge emittance growth 

ρ = 1 

εth = 0.6 µm

Eacc = 25 MV/m



•  The rms emittance concept
•  Energy spread contribution
•  rms envelope equation
•  Space charge forces
•  Beam emittance oscillations and decoherence

OUTLINE



Surface charge density Surface electric field

Restoring force

Plasma frequency

Plasma oscillations



Neutral Plasma

Magnetic focusing

Magnetic focusing

Single Component       
Cold Relativistic Plasma

• Oscillations

• Instabilities

• EM Wave propagation



Single Component 
Relativistic Plasma
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" " σ + ks
2σ =

ksc s,γ( )
σ

ks =
qB

2mcβγ
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δ # # σ s( ) + 2ks
2δσ s( ) = 0

€ 

σ eq s,γ( ) =
ksc s,γ( )
ks

Equilibrium solution:

€ 

σ ζ( ) =σ eq s( ) +δσ s( )

Small perturbation:

€ 

σ s( ) =σ eq s( ) +δσ o s( )cos 2ksz( )

Perturbed trajectories oscillate around the equilibrium with the same frequency 
but with different amplitudes:
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δσ s( ) = δσ o s( )cos 2ksz( )



σ(z)

ε(z)

Envelope oscillations drive Emittance oscillations

€ 

εrms = σ x
2σ x'

2 −σ xx'
2 = x2 % x 2 − x % x 2( ) ≈ sin 2ksz( )



Emittance Oscillations are driven by space charge differential 
defocusing in core and tails of the beam 

x

px

Projected Phase Space Slice Phase 
Spaces
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Perturbed trajectories oscillate around the 
equilibrium with the  

same frequency but with different amplitudes 



σ(z)

ε(z)

energy spread induces decoherence



•  The rms emittance concept
•  Energy spread contribution
•  rms envelope equation
•  Space charge forces
•  Beam emittance oscillations and decoherence
•  Adiabatic plasma matching

OUTLINE



Plasma Accelerator



Continuous Uniform Cylindrical Beam Model with ionized gas 
background
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J =
I
πa2

€ 

ρ =
I

πa2v
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a

Bϑ = µo

I 1− fm( )
2πa2  r   for    r ≤ a

Bϑ = µo

I 1− fm( )
2πa2  a

2
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  for    r > a

fm : current neutralisation factor

Er =
I 1− fe( )
2πεoa

2v
r     for   r ≤ a

Er =
I 1− fe( )
2πεov

1
r

     for   r > a
fe : charge neutralisation factor



Lorentz Force

Fr = e Er − βcBϑ( ) = eEr

γ 2
1−γ 2 fe + β

2γ 2 fm( )

!!σ +
k2

γ
σ =

2I
IAγ

3σ
1−γ 2 fe +γ

2 fm( )+ εn
2

γ 2σ 3

Generalized Envelope Equation

β =1



Equilibrium solution 
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IAγ
3σ

1−γ 2 fe +γ
2 fm( )+ εn

2

γ 2σ 3

!γ = K = 0

1−γ 2 fe +γ
2 fm( ) <

>
0        ⇒ focusing

⇒ defocusing

σ =
IAγεn

2

2I γ 2 fe −γ
2 fm −1( )



σ eq z( ) = 2
γ

4
εn
kp z( )

Adiabatic Plasma Matching 
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+
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   ⇒    1−γ 2 −β 2γ 2( ) ≡ −2β 2γ 2 << 0

Self - Pinch in the Final Focus of a e+e- Collider 
  

σ eq =
IAεn

2

4Iγ



Capillary discharge 



•  20	  images	  separated	  by	  100	  ns,	  so	  2	  µs	  of	  total	  observa8on	  8me	  of	  the	  plasma	  plumes	  
•  The	  ICCD	  camera	  area	  is	  1024	  x	  256	  pixel	  	  

Plasma plumes 

Discharge	  voltage	  18	  kV	  
Capillary	  

Electrode	  
Plasma	  
channel	  

20	  mm/2	  μs	  

	  

§  Both	  plama	  plumes	  can	  reach	  a	  total	  expansion	  length	  around	  40	  mm	  (20	  mm	  each	  
one)	  that	  is	  comparable	  with	  the	  channel	  length	  of	  30	  mm,	  so	  they	  can	  strongly	  
affect	  the	  beam	  proper&es	  that	  passes	  through	  the	  capillary	  

§  Temperature,	  pressure	  and	  plasma	  density,	  inside	  and	  outside	  the	  gas-‐filled	  
capillary	  plasma	  source,	  represent	  essen&al	  parameters	  that	  have	  to	  be	  
inves&gated	  to	  understand	  the	  plasma	  evolu&on	  and	  how	  it	  can	  affect	  the	  electron	  
beam.	  

Vacuum	  

 Angelo.Biagioni@lnf.infn.it	  



66F. Filippi

Tapered capillaries

10°	  

By monotonically varying the 
radius of the capillary it is possible 
to change the density. 

Kaganovich	  et	  al.,	  Appl.	  Phys.	  LeO.	  75,	  
772–774	  (1999).	  

Local control of the plasma density is required to match the laser/electron beam into the 
plasma. 
Tapering the capillary diameter is the easiest way to change locally the density. 

Studies on plasma tapering are 
currently in progress in the 
SPARC_LAB Plasma lab.
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Tapered capillaries
Local control of the plasma density is required to match the laser/electron beam into the 
plasma. 
Tapering the capillary diameter is the easiest way to change locally the density. 

TAPERING OF:	   0°	   5°	   10°	   15°	   CAPILLAR
Y 

TAPERING 
ANGLE


