# Modelling & Simulation



**ISCTE UL** Instituto Universitário de Lisboa

# Hands on I/II

## R. A. Fonseca<sup>1,2</sup>, Jorge Vieira<sup>1</sup>

<sup>1</sup>GoLP/IPFN, Instituto Superior Técnico, Lisboa, Portugal <sup>2</sup> DCTI, ISCTE-Instituto Universitário de Lisboa, Portugal



## OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores

- Explicit SSE / AVX / QPX / Xeon Phi /
- CUDA support
- Extended physics/simulation models

# Committed to open science



٠

٠

- 40+ research groups worldwide are using OSIRIS 300+ publications in leading scientific journals
- Large developer and user
- community
- Detailed documentation and sample inputs files available

## Using OSIRIS 4.0

The code can be used freely by research institutions after signing an MoU Find out more at:

http://epp.tecnico.ulisboa.pt/osiris



**Ricardo Fonseca:** ricardo.fonseca@tecnico.ulisboa.pt







# The ZPIC educational code suite

## ZPIC code suite

- Open-source PIC code suit for plasma physics education
- Fully relativistic 1D and 2D EM-PIC algorithm
- Eletrostatic 1D/2D PIC algorithm

### • **Requirements**

- No external dependencies, requires only C99 compiler
- Optional Python interface

### • Jupiter Notebooks

zpic@edu

- Includes set of Python notebooks with example problems
- Detailed explanations of code use and physics

### • Also available through Docker

• If you just want to run the notebooks you can use a Docker image available on DockerHub: **zamb/zpic** 







## **Come find us on GitHub** github.com/zambzamb/zpic

# VICO



## Outline

## Review of the Particle-In Cell Algorithm

- Plasma simulation using particles
- The Particle-In-Cell algorithm
- Units and Normalization
- Time-step considerations

## • Modelling LWFA with PIC Codes

- Choice of normalization units
- Resolution and box size
- Simulation Particles
- Useful diagnostics

## • Running ZPIC on your Computer

- Compiling from source
- Using a Docker image
- Hands-on examples







UNIVAC 1 - 1951

Internal view



# **Overview of Plasma Simulation Algorithms**

## **Plasma Simulations Using Particles**

- Pioneered by John Dawson and Oscar Buneman circa 1960
- Use macro particles to simulate large spatial regions
  - 1 simulation particle corresponds to many plasma particles
- Particle-Particle simulations
  - Computations go with  $O(N_p^2)$
  - Computationally very demanding

### Particle-In-Cell algorithms

- Interact particles through fields
- Discretize fields on grids
- Interpolate fields at particle positions to calculate forces
- Deposit particle charge/current on a grid
- Particle-Mesh algorithm
  - Computations go with  $O(N_p)$
  - Still computationally heavy but much more tractable







## The particle-in-cell (PIC) Algorithm



## Fully Relativistic, Electromagnetic Particle-In-Cell algorithm

- Discretize Electric and Magnetic fields on a grid
- Cell size must resolve shortest relevant lengths in the simulation
  - Typically the laser wavelength or the plasma skin depth
- Represent plasma particles with simulation macro-particles
  - Free to move in entire *n*D-3V phasespace
  - Each macro-particle represents several plasma particles
- Must have enough particles per cell to properly resolve velocity distributions
- Fields and particles don't exist in the same simulation topology
  - Field quantities are limited to grid points
  - Field interpolation connects fields → particles
  - Current deposition connects particles  $\rightarrow$  fields

## • Four major steps

- Field interpolation
- Particle advance
- Current deposition
- Field advance



zpic@edu

## Interpolating the fields

### • Particles are free to move to any position

- Field are discretized on a grid
- Field values at particle positions are required to advance particle momenta

### • Interpolate fields at particle positions

- ZPIC uses linear interpolation
- In 2D this can be viewed as area weighting
- The interpolating scheme must be consistent with charge / current deposition

### • Momentum conserving algorithm

- Avoids self-forces
- dp/dt = 0 for single particle





# Pushing the particles

- Advance generalized velocity and position of individual particles
  - ZPIC is a fully relativistic code so we work with  $\mathbf{u} = \gamma \beta$ instead  $\mathbf{v}$ .
  - We use a leap-frog scheme to integrate particle motion:
    - Positions (x) are defined at integral time-steps t<sup>n</sup>
    - Velocities (**u**) are defined at half time-steps  $t^{n+\frac{1}{2}}$
  - Second-order accuracy in time

### Velocities are integrated using a relativistic Boris pusher

- Separate **E** and **B** contributions
  - i. Accelerate with <sup>1</sup>/<sub>2</sub> electric impulse
  - ii. Full magnetic field rotation
  - iii. Add remaining 1/2 electric impulse
- Fully relativistic, second order time accurate
- By construction, no work from **B** field
- Position advance is straightforward
  - ZPIC stores cell index and position inside cell

### Advance momenta

i. 
$$\mathbf{u}^{-} = \mathbf{u}^{n-1/2} + \frac{q\mathbf{E}^{n}}{m}\frac{\Delta t}{2}$$
  
ii.  $\mathbf{u}' = \mathbf{u}^{-} + \mathbf{u}^{-} \times \mathbf{t}$   
iii.  $\mathbf{u}^{+} = \mathbf{u}^{-} + \mathbf{u}^{-} \times \mathbf{s}$   
iv.  $\mathbf{u}^{n+1/2} = \mathbf{u}^{+} + \frac{q\mathbf{E}^{n}}{m}\frac{\Delta t}{2}$   
 $\mathbf{t} = -\frac{q\mathbf{B}^{n}}{\gamma^{n}mc}\frac{\Delta t}{2}$   
 $\mathbf{s} = \frac{2\mathbf{t}}{1+\mathbf{t}^{2}}$ 

### Advance positions

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \frac{\mathbf{u}^{n+1/2}}{\gamma^{n+1/2}} \Delta t$$

Boris, JP Proc. Fourth Conf. Num. Sim. Plasmas (1970) 3-67





## Depositing the current

## • Connects particle motion to field equations

Current deposition must satisfy continuity equation:

$$\frac{\partial \rho}{\partial t} = -\nabla' \cdot \mathbf{j}$$

- The operator  $\nabla$  ' corresponds to the finite difference approximation
- Simply depositing  $\rho \mathbf{v}$  does not conserve charge
- Critical to guarantee the solutions to Maxwell's equations are self-consistent
- Exact charge conserving current deposition scheme
  - Developed by Villaseñor and Buneman for linear interpolation
  - Looks at particle motion, not velocity
  - Limited to motion inside single cell
    - If particles cross cell boundary, motion is split into segments that don't cross boundaries



Villasenor & Buneman Comp. Phys. Comm. 69 (1992) 306-316



## Advancing the EM fields

- EM Fields are advanced in time using Maxwell's equations using the deposited current as source terms
  - Rearrange Ampére's and Faraday's laws:

$$\frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \mathbf{j}$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

- Discretize temporal and spatial derivatives using finite differences
- Careful time and spacial centering of quantities leads to 2<sup>nd</sup> order accuracy
  - ZPIC uses the Finite Difference Time Domain (FDTD) algorithm
  - Fields are staggered in time for 2<sup>nd</sup> order accuracy
    - **E** is defined at times  $t^n$
    - **B** and **j** are defined at times  $t^{n+\frac{1}{2}}$
    - **B** is later time centered for use in particle advance
  - And also in space:
    - Spatial derivatives are also 2<sup>nd</sup> order accurate





## Choice of time-step

Choice of time-step is dominated by the FDTD solver (in sim. units):

1D  $\Delta t \leq \Delta x$ 

2D  $\Delta t \le (\Delta x^{-2} + \Delta y^{-2})^{-\frac{1}{2}}$ 

- If time step is larger than Courant condition the field solver becomes unstable
- If time step is much smaller than courant condition for large k,  $v_{ph}$  drops as low as  $2/\pi = 0.637$  c
- Relativistic particles may have v > v<sub>0</sub>
  - Numerical Cherenkov







## Units and Normalization in ZPIC

### Careful choice of units and normalization is critical lacksquare

- Avoids multiplication by several constants (e.g.  $m_{\rm e}$ , e and c) improving performance and numerical accuracy.
- By expressing the simulation quantities in terms of fundamental plasma quantities the results are general and not bound to some specific units we may choose

### Units and normalization in ZPIC

- The frequencies are normalized to a normalization frequency,  $\omega_n$ . Time is normalized to  $\omega_n^{-1}$ .
- Proper velocities are normalized to the speed of light, c. Space is normalized to  $c/\omega_{\rm n}$ .
- Charge and mass are normalized to the absolute electron charge, e, and the electron mass,  $m_{\rm e}$ . The fields are then normalized appropriately.
- The density is normalized to  $\omega_n^2$  (the normalization frequency squared). So if the density is 1 at a given location then the normalization frequency is the plasma frequency at that location.
- If the laser frequency is 1, then the normalization frequency is the laser frequency and the density is normalized to the critical densify (for that laser frequency).



### zpic units



$$\mathbf{p}' = \frac{\mathbf{p}}{m_{sp}c} = \frac{\gamma \mathbf{v}}{c} = \frac{\mathbf{u}}{c}$$

$$\mathbf{E}' = e \frac{c/\omega_n}{m_e c^2} \mathbf{E}$$



 $m_{sp}$  is the mass of the species









# Modelling Laser Wakefield Acceleratio



Laser Wakefield Acceleration
3D Simulation using the OSIRIS code

## Reference length and time

## **Choose the normalization**

### **Plasma sets reference**

### **Plasma density is unity**

• Normalize lengths to plasma skin depth and frequency to plasma frequency

### Example

- Plasma density  $n_p = 10^{18} \text{ cm}^{-3}$
- Plasma frequency  $\omega_p \sim 5.64 \times 10^{13}$  rad s<sup>-1</sup>
- Laser wavelength  $\lambda_0 = 1 \, \mu m$
- Laser frequency  $\omega_0 \sim 2.34 \times 10^{15}$  rad s<sup>-1</sup>
- Normalised laser frequency is  $\omega_0/\omega_p \sim 41.5$

## Both (and other) normalizations are possible. In this session we will use the plasma as the reference!

## Laser sets reference

### **Reference laser frequency is unity**

• Normalize plasma density to critical density; length to inverse laser wavenumber

### Example

- Laser wavelength  $\lambda_0 = 1 \mu m$
- Laser frequency  $\omega_0 \sim 2.34 \times 10^{15} \text{ rad s}^{-1}$
- Critical frequency n<sub>crit</sub> ~ 1.72 × 10<sup>21</sup> cm<sup>-3</sup>
- Plasma density n<sub>p</sub>=10<sup>18</sup> cm<sup>-3</sup>
- Normalized plasma density  $n_p/n_{crit} \sim 5.8 \times 10^{-4}$



## Choosing the spatial resolution

- Laser propagates in an underdense plasma ullet
  - $n_p \ll n_{crit} | \lambda_0 \ll \lambda_p | \omega_p \ll \omega_0$
- Need to resolve the smallest scale length ullet
  - > 20 30 cells per wavleng

### Plasma wave $\bullet$

- Skin depth sets the plasma scale length
- $c/\omega_p \sim 5.3 \,\mu m/(n_p [10^{18} \, \text{cm}^{-3}])^{1/2}$
- Laser ullet
  - laser wavelength sets the laser scale length
  - $\lambda_0 \sim 1 \,\mu m \sim 0.18 (n_p [10^{18} \text{cm}^{-3}])^{1/2} \text{c}/\omega_p$



Longitudinal spatial Resolution:  $\Delta x \sim \lambda_0 / \# \sim 0.18 / \# (n_p [10^{18} cm^{-3}])^{1/2} c / \omega_p$ 

# > 20-30 (number of cells per laser wavelength)



## Simulation box dimensions

| • | Simulations are done in a moving window moving at the speed of light                           |                                    |
|---|------------------------------------------------------------------------------------------------|------------------------------------|
|   | <ul> <li>The simulation box does not need to hold the<br/>entire propagation length</li> </ul> |                                    |
| • | Simulation box needs only to model the relevant structures in the accelerator                  | _                                  |
|   | <ul> <li>Laser driver and initial trailing buckets of<br/>accelerating structure</li> </ul>    | x <sub>3</sub> [c / ω <sub>F</sub> |
| • | Box size determined by largest relevant structures                                             |                                    |
|   | - Longitudinally                                                                               |                                    |
|   | <ul> <li>a few plasma wavelengths long</li> </ul>                                              |                                    |
|   | – >4 λp ~ 25 c/ωp                                                                              |                                    |
|   | <ul> <li>Transversely (2D)</li> </ul>                                                          |                                    |
|   | <ul> <li>Laser pulse waist / transverse bubble size</li> </ul>                                 |                                    |
|   | - >4λp~25c/ωp                                                                                  |                                    |
|   |                                                                                                |                                    |







## Setting up the simulation: cells, particles

### Simulation grid $\bullet$

- Box length: L = 4  $\lambda_p$
- 20 points per laser wavelength
- $-\Delta x \sim \lambda_0/20 \sim 0.18/20 = 0.009 c/\omega_p$
- Number of cells ~ L /  $\Delta x$  ~ 2800 cells

### Simulation particles ullet

- Number of particles per cell must resolve local phasespace
- ≫1 in 1D (e.g. 64)
- ~ 10 in 2D
- Higher numbers improve phasespace resolution (detailed distribution tails)
- Also reduces simulation noise

**Particles per cell:**  $\gg$ 1 in 1D (e.g. 64) and around 10 in 2D



**Longitudinal cells:**  $4 \lambda_p / (0.18/20 \text{ c} / \omega_p) \sim 2800 \text{ cells} (n_p = 10^{18} \text{ cm}^{-3})$ 



## Useful diagnostics

| • | Plasma density                                                          |        |
|---|-------------------------------------------------------------------------|--------|
|   | <ul> <li>Charge density of the background plasma</li> </ul>             | 0 3 J  |
|   | <ul> <li>Wave structure and particle loading</li> </ul>                 | 0.5    |
|   |                                                                         | 0.2 -  |
| • | Longitudinal electric field                                             |        |
|   | <ul> <li>Accelerating / decelerating fields</li> </ul>                  | 0.1 -  |
| • | Transverse electric field                                               | I 0.0  |
|   | <ul> <li>Laser field</li> </ul>                                         | -0.1   |
|   | <ul> <li>Focusing / defocusing fields (2D)</li> </ul>                   | -0.2   |
| • | Particle phasespace                                                     | -0.3 - |
|   | <ul> <li>Show particle momenta as a function of<br/>position</li> </ul> | (      |
|   | – Most common is $u_1/x_1$                                              |        |
|   | <ul> <li>Wave structure and particle acceleration</li> </ul>            |        |



Longitudinal Electric Field and Plasma Density

Simulations performed in a moving window that travels at c



## Plasma density and longitudinal electric field

### Simulations performed in a moving window that travels at c





## Transverse electric field (2D/3D)



### Simulations performed in a moving window that travels at c

## Transverse electric field t = 22.008



## Focusing fields: non relativistic particles

## $E_{\perp}$ is the focusing force for non-relativistic particles $[(v \times B \ / \ c)_{\perp} \ll E_{\perp}]$



### Simulations performed in a moving window that travels at c



## Focusing fields: Ultra-relativistic particles

## Focusing force for a ultra-relativistic particle:

 $\mathbf{E}_{\mathbf{r}} + \mathbf{V}_{||} \times \mathbf{B}_{\Theta} / \mathbf{C} \simeq \mathbf{E}_{\mathbf{r}} - \mathbf{B}_{\Theta}$ 





## Longitudinal phase-space

|                                                                                       |    | 1.50 -  |     |
|---------------------------------------------------------------------------------------|----|---------|-----|
|                                                                                       |    | 1.25 -  |     |
| <ul> <li>Longitudinal particle phase-space</li> </ul>                                 |    | 1.00 -  |     |
| <ul> <li>Plots momenta vs. position</li> </ul>                                        |    | 0.75 -  |     |
| <ul> <li>Phasespace density or 1 point per<br/>particle</li> </ul>                    | IJ | 0.50 -  |     |
| <ul> <li>Most common is longitudinal<br/>momenta vs. longitudinal position</li> </ul> |    | 0.25 -  |     |
| i.e. <u>u</u> 1-X1                                                                    |    | 0.00 -  |     |
|                                                                                       |    | -0.25 - |     |
|                                                                                       |    |         | 0.0 |

## u1-x1 phasespace t = 22.819



### Simulations performed in a moving window that travels at c



## Particle acceleration and deceleration



In plasma based acceleration: Energy  $[m_e c^2] = \gamma - 1 \approx \gamma \approx u_1$  [me c]











Harvard Mark I - 1944 Rear view of Computing Section

# Running ZPIC - Option 1 - compile from source

### • Build from ZPIC source

- ZPIC itself has no external dependencies, and requires only a C99 compliant C compiler
  - gcc, clang and intel tested
- The code is open-source and hosted on GitHub
  - <u>https://github.com/zambzamb/zpic</u>

### • Build Python interface

- The Python interface requires a Python3 installation
  - We recommend the Intel Python distribution
- The interface also requires NumPy and Cython packages to be installed
- Just use the Makefile in the python subfolder of the ZPIC distribution
  - This will also compile all of the ZPIC codes
- Using the Jupyter notebooks
  - Requires a working Jupyter + Python installation
    - Again, we recommend the Intel Python distribution
  - Launch Jupyter and open one of the example notebooks

27

python — fish /Users/zamb/Source/zpic/python — -fish

[zamb@zamblap-2 ~/S/z/python> make python3 setup.py build\_ext -if Compiling em1d.pyx because it changed. Compiling em2d.pyx because it changed. Compiling es1d.pyx because it changed. Compiling em1ds.pyx because it changed. Compiling em2ds.pyx because it changed. [1/5] Cythonizing em1d.pyx [2/5] Cythonizing em1ds.pyx [3/5] Cythonizing em2ds.pyx

pes -I/opt/intel/intelpython3/include -I/opt/intel/intelpython3/include -std=c99 -I. -I/opt/intel/intelpy thon3/include/python3.6m -c ../em2ds/zdf.c -o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/zdf.o /usr/bin/clang -bundle -undefined dynamic\_lookup -L/opt/intel/intelpython3/lib -L/opt/intel/intelpython3/ lib -arch x86\_64 build/temp.macosx-10.6-x86\_64-3.6/em2ds.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/cha rge.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/current.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/emf .o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/fft.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/filter.o b uild/temp.macosx-10.6-x86\_64-3.6/../em2ds/grid2d.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/particles.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/random.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/simulatio n.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/timer.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/simulatio n.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/timer.o build/temp.macosx-10.6-x86\_64-3.6/../em2ds/zdf.o -L/opt/intel/intelpython3/lib -o /Users/zamb/Source/zpic/python/em2ds.cpython-36m-darwin.so zamb@zamblap-2 ~/S/z/python> []

| ••            | 🔲 python ·    | — jupyter    /Users/zam | nb/Source/zpic/python — | jupyter-notebook LWFA 2D.ip            | oynb ► python         |
|---------------|---------------|-------------------------|-------------------------|----------------------------------------|-----------------------|
| nb@zamblap-2  | ~/S/z/python> | jupyter notebook LV     | WFA\ 2D.ipynb           |                                        |                       |
| 17:13:47.845  | NotebookApp]  | JupyterLab extension    | on loaded from /opt/int | tel/intelpython3/lib/pyth              | on3.6/site-packages/j |
| 17:13:47.845  | NotebookApp]  | JupyterLab applicat     | tion directory is /opt, | /intel/intelpython3/share,             | /jupyter/lab          |
| 17:13:47.850  | NotebookApp]  | Serving notebooks       | from local directory: , | /Users/zamb/Source/zpic/p              | ython                 |
| 17:13:47.850  | NotebookApp]  | 0 active kernels        |                         |                                        |                       |
| 17:13:47.850  | NotebookApp]  | The Jupyter Noteboo     | ok is running at:       |                                        |                       |
| 17:13:47.850  | NotebookApp]  | http://localhost:88     | 388/?token=676ee830df60 | 01408ba79a6ecf0c0db560784 <sup>.</sup> | fc654521b963          |
| 17:13:47.850  | NotebookApp]  | Use Control-C to st     | top this server and shu | ut down all kernels (twice             | e to skip confirmatio |
| 17:13:47.854  | NotebookApp]  |                         |                         |                                        |                       |
|               |               |                         |                         |                                        |                       |
| Copy/paste    | this URL into | your browser when y     | you connect for the fi  | rst time,                              |                       |
| to login wi   | th a token:   |                         |                         |                                        |                       |
| http://       | localhost:888 | 8/?token=676ee830df6    | 501408ba79a6ecf0c0db560 | 0784fc654521b963                       |                       |
| 17:13:48.855  | NotebookApp]  | Accepting one-time-     | -token-authenticated co | onnection from ::1                     |                       |
| 17:13:49.797  | NotebookApp]  | 404 GET /static/com     | nponents/moment/locale, | /en-gb.js?v=2019031417134              | 7 (::1) 9.97ms refere |
| alhost:8888/n | otebooks/LWFA | %202D.ipynb             |                         |                                        |                       |
| 17:13:50.348  | NotebookApp]  | Kernel started: 967     | 761370-79fb-4e91-bf01-( | 6c6f0143cea5                           |                       |
| 17:13:51.092  | NotebookApp]  | Adapting to protoco     | ol v5.1 for kernel 9670 | 61370-79fb-4e91-bf01-6c6f              | 0143cea5              |







# Running ZPIC - Option 2 - use a Docker container

### • Install Docker desktop on your computer

- Available for free at:
  - <u>https://www.docker.com/products/docker-</u>
     <u>desktop</u>

### • Run the ZPIC image

- The ZPIC container image is hosted on DockerHub
- Open a terminal window and type the following command

### - > docker run -p 8888:8888 -t zamb/zpic

- The first time you do it, it will download the ZPIC container image. This can take a little time.
- Open a web browser on your computer and point it to the appropriate port
  - Type in the following as the address
    - localhost:8888/?token=[TOKEN]
  - Get the [TOKEN] value from the output of the docker run command
  - The port number must match the docker run command



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🕯 zamb — docker 🛛 /Users/z       | amb — docker run -p 888       | 88:8888 -trm zamb/zr  | pic         |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|-----------------------|-------------|--------------|
| <pre>-2 ~&gt; docker run -p 8888:8888 -trm zamb/zpic<br/>e command: jupyter notebook<br/>455 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cook<br/>668 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab<br/>668 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab<br/>670 NotebookApp] Serving notebooks from local directory: /home/jovyan<br/>670 NotebookApp] The Jupyter Notebook is running at:<br/>670 NotebookApp] http://(d02798c226cc or 127.0.0.1):8888/?token=0dd946005de0e6db9083ca039ea66faffd24cd51bdd8d55d<br/>671 NotebookApp]</pre> |                                  |                               |                       |             |              |
| with a token:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                               |                       |             |              |
| ://(d02/98C226CC OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/.0.0.1):8888/?token=000        | 19460050e0e60b9083ca03        | 9eabbTaTT024c051b0080 | 050         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                               |                       |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                               |                       |             |              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                               |                       |             |              |
| New Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × +                              |                               |                       |             |              |
| $\leftrightarrow$ $\rightarrow$ C $\triangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | localhost:8888/?token=6a         | 5923150af1e61987351e          | 53e2dacb8335824aa56   | 349df94     | 🧶 i          |
| Apps FCT : Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ctos <b>FCT</b> FCT : Curriculum | Intel <sup>®</sup> C++ Compil | Intel(R) C++ Com      | » 🗎 🛅 Othe  | er Bookmarks |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                               | Gr                    | nail Images |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                               |                       |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Search Google or type            | URL                           | Ļ                     |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                               |                       |             |              |





# Using ZPIC Notebooks

### Jupyter notebooks $\bullet$

- Similar to Mathematica notebooks but for Python
- Run in a web browser
- Organized in a sequence of cells
- Each cell can contain Python code or annotations

### The code is runs inside the notebook $\bullet$

- Initialize the simulation
- Run to specified time
- Access simulation data directly to visualize output
- Several examples provided

### Saving simulation output not necessary $\bullet$

- Example simulations run in ~ 1 minute
- Visualize results in the notebook
- Interactively modify simulation parameters
- If required (e.g. for longer simulations) the code can save simulation results to disk
  - Files are saved in the ZDF format
  - a Python module is provided to read these files





# Hands-on

111111

- 1







**CERN Large Hadron Collider** Accelerator Tunnel

## IF TÉC LIS



## Launch a ZPIC notebook

- Option 1 Compile from source
  - i.Compile the code
  - ii.Launch the Jupyter notebook from the source folder:
  - > jupyter notebook LWFA1D.ipynb

## Option 2 - Use a Docker Container

- i.Install Docker
- ii.Launch the zpic container
- changes to the existing notebooks or create new ones



> docker run -p 8888:8888 -t -v \$PWD:/home/jovyan/work zamb/zpic

- This mounts the directory **\$PWD** on the directory **work** on your container so you can save



## Example: Laser Wakefield Accelerator

## Simulate a laser wakefield accelerator:

- Add an ultra-intense laser beam as a driver  $(a_0 \sim 2)$
- Choose laser length smaller than  $\lambda_p$

## **Questions:**

- 1.can you observe particle injection and trapping?
- 2. is the energy gain consistent with the longitudinal electric field values?
- 3.describe and justify the shape for the plasma electric field in the region where particles accelerate
- 4.could you accelerate positrons in this plasma wave? where would you place them and with what initial velocity/energy? try to simulate!





## Example: plasma beat wave accelerator

## Simulate a plasma beat-wave accelerator:

- Super-impose three laser modes with frequencies differing by  $\omega_{\rm p}$ (e.g.  $\omega_0 = 10, 11 \omega_p$ )
- Choose Laser length  $\gg \lambda_p$

## **Questions:**

- 1.why does the plasma wave amplitude increase along the pulse?
- 2.what happens if the the initial frequencies of the lasers are not separated by the plasma frequency? Why?
- 3.compare the trapping threshold, as a function of the peak laser  $a_0$ , for a standard LWFA (with pulse length smaller than  $\lambda_p$ ) with the beat-wave accelerator. Which one is the lowest?
- 4.Decrease the amplitude of the laser side bands and run the simulation for longer times. What happens to the laser?





## Example: plasma wakefield accelerator

## Simulate a plasma wakefield accelerator:

- Use an ultra-relativistic particle beam as a driver
- e.g.  $u_{\rm fl}$  = 100, length ~ 10 c/ $\omega_{\rm p}$ , density ~ 0.3
- Choose plasma length  $\gg\!\lambda_{\text{p}}$

## **Questions:**

- 1.Why does the head of the driver loose energy?
- 2.What happens to the energy of the driver if it has a length comparable to  $\lambda_{\text{p}}?$
- 3.What is the phase velocity of the plasma wave?
- 4.Can you observe plasma electron trapping and acceleration?



