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Particle accelerators: from RF to optical/photonic drive?

RF cavity (TESLA, DESY)

Conventional linear
accelerator (RF)

Laser-based dielectric
accelerator (optical)

Based on

Peak field limited by

Max. achievable 
gradients

(Supercond.) RF cavities Dielectric nano structures

Surface breakdown:
200 MV/m

Damage threshold:
30 GV/m

100 MeV/m 10 GeV/m
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Particle accelerators: from RF to optical/photonic drive?

Laser-based dielectric
accelerator (optical)

Based on

Max. achievable 
gradients

Dielectric nano structures

10 GeV/m

Rasmus Ischebeck

Plasma wakefield &
Laser plasma accelerators

Plasma

10s – 100s GeV/m

Driving laser 4 PW/m 100 GW/m (no laser recycle)
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Preview: where do we want to end up after the lecture

t = 0

t = p/2

t = p

1
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acceleration

deceleration

deflection

deflection
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An old idea … I
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An old idea … II
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Electromagnetic waves – Maxwell Equations

𝛻 ∗ 𝐸 =
ρ

ε0

Gauss‘ law for electricity • Electric field 𝐸
• Total charge ρ
• Vacuum permittivity 𝜖0

• Divergence 𝛻 ∗  𝑥

The electric flux out of a closed surface is 
proporional to the enclosed charge
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Electromagnetic waves – Maxwell Equations

𝛻 ∗ 𝐵 = 0

Gauss‘ law for magnetism • Magnetic field 𝐵

The magnetic flux out of a closed surface is zero
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Electromagnetic waves – Maxwell Equations

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

Faraday‘s law of induction • Curl 𝛻 ×  𝑥

The curl of the electric field is equal to the negative
rate of change of the magnetic field
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Electromagnetic waves – Maxwell Equations

𝛻 × 𝐵 = 𝜇0𝜖0

𝜕𝐸

𝜕𝑡
+ 𝜇0

 𝐽

Ampere‘s law • Current  𝐽
• Vacuum permeability 𝜇0

• Divergence 𝛻 ∗  𝑥

The curl of the magnetic field is proportional to the electric
current flowing through a loop and the rate of change

of the electric field
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Electromagnetic waves – Maxwell Equations

𝛻 ∗ 𝐸 =
ρ

ε0

Gauss‘ law for electricity

𝛻 ∗ 𝐵 = 0

Gauss‘ law for magnetism

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

Faraday‘s law of induction

𝛻 × 𝐵 = 𝜇0𝜖0

𝜕𝐸

𝜕𝑡
+ 𝜇0

 𝐽

Ampere‘s law

Evaluate in vacuum -> no charges and currents
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Maxwell Equations predict waves

Source: The University of Texas at El Paso: EE 4347 Applied Electromagnetics 
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Maxwell Equations predict waves

Source: The University of Texas at El Paso: EE 4347 Applied Electromagnetics 
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Electromagnetic waves in vacuum

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
Faraday‘s law of induction

𝛻 × (𝛻 × 𝐸) = 𝛻 × −
𝜕𝐵

𝜕𝑡
Take the curl

𝛻 × 𝛻 × 𝐸 = −
𝜕

𝜕𝑡
(𝛻 × 𝐵)

Change RHS order of
differentiation

But we know already Ampere‘s law 𝛻 × 𝐵 = 𝜇0𝜖0

𝜕𝐸

𝜕𝑡
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Electromagnetic waves in vacuum

𝛻 × 𝛻 × 𝐸 = −
𝜕

𝜕𝑡
𝜇0𝜖0

𝜕𝐸

𝜕𝑡

Substitute 
Ampere‘s law

𝛻 × 𝛻 × 𝐸 = −𝜇0𝜖0

𝜕2𝐸

𝜕𝑡2
Assume 𝜇0𝜖0 are

not time dependent 

With identity 𝛻 × 𝛻 ×  𝐴 = 𝛻 𝛻 ∗  𝐴 − 𝛻2  𝐴

𝛻 𝛻 ∗ 𝐸 − 𝛻2 𝐸 = −𝜇0𝜖0

𝜕2𝐸

𝜕𝑡2
But: 𝛻 ∗ 𝐸 = 0

𝛻2 𝐸 = 𝜇0𝜖0

𝜕2𝐸

𝜕𝑡2
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Electromagnetic waves in vacuum

𝛻2 𝐸 = 𝜇0𝜖0

𝜕2𝐸

𝜕𝑡2
𝛻2 𝐵 = 𝜇0𝜖0

𝜕2𝐵

𝜕𝑡2

𝛻2  𝐴 =
1

𝑣2

𝜕2  𝐴

𝜕𝑡2

Generaleralized form 
of the wave equation

c =
1

𝜇0𝜖0

Solution: Plane waves

𝐸 𝑡,  𝑟 = 𝐸0 ∗ 𝑒𝑖𝑘  𝑟−𝑖𝜔𝑡 𝐵 𝑡,  𝑟 = 𝐵0 ∗ 𝑒𝑖𝑘  𝑟−𝑖𝜔𝑡
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Electron light interaction in free space

Position (nm)
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Lawson-Woodward theorem

• The interaction takes place in vacuum (unity refractive index)

• No boundaries or surfaces are present, i.e., the distance from 
any source of field is large compared to the wavelength (far-
field)

• The particle is moving in a region without other free charges

• (The particle is highly relativistic)

• No static electric or magnetic fields are present

• The interaction region is infinitely large

• Non-linear forces (e.g., the ponderomotive force) are 
neglected.

Palmer, R. An introduction to acceleration mechanisms. 

Frontiers of Particle Beams 296, 607{635 (1988).

No net acceleration if all the following are true:

Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains, M. Kozák, et. al., Phys. Rev. 
Lett. 120, 103203
Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum,
M. Kozák et. al., Nature Physics volume14, pages121–125 (2018)
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Ponderomotive acceleration

l1 = 1356 nm 
(0.91 eV)
l2 = 1958 nm 
(0.63 eV) 
a = 41°
b = 107°
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Ponderomotive acceleration

In both pulsed beams:
Ep = 85 mJ
Ip = 3 1015 W/cm2

(rep. rate: 1 kHz)

Gradient: 2.2 GeV/m

 +/- 7 keV broad 
shoulders

 corresponding to 
absorption/emission 
of ~10,000 photons
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Electromagnetic waves at interfaces

Boundary conditions:

• 𝑛12 × 𝐸2 − 𝐸1 = 0

• 𝐷2 − 𝐷1 ∗ 𝑛12 = 𝜎𝑠

• 𝐵2 − 𝐵1 ∗ 𝑛12 = 0

• 𝑛12 × 𝐻2 − 𝐻1 = 𝑗𝑠

With:
• 𝑛12 the normal vector 

from medium 1 to 2

• 𝐷 = 𝜖0𝐸 + 𝑃 the electric
displacement field

• 𝜎𝑠 the surface charge 

• 𝐻 =
𝐵

𝜇0
− 𝑀 the magnetic

field strength in matter

• 𝑗𝑠 the surface current

Dielectrics only    –> 𝜎𝑠 = 0 = 𝑗𝑠
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Dielectric – Dielectric interface

From the boundary conditions + plane waves:

𝑘𝑖 − 𝑘𝑟 ∗  𝑟 = 0

𝑘𝑖 − 𝑘𝑡 ∗  𝑟 = 0

Evaluating the scalar product yields:
𝑘𝑖,𝑥 = 𝑘𝑟,𝑥 = 𝑘𝑡,𝑥

𝑘𝑖,𝑥 = 𝑘𝑖 sin𝜙 = 𝑛𝑖𝜔

𝑐
sin 𝜙

Similar for transmitted wave:

𝑘𝑡 =
𝑛𝑡𝜔

𝑐
= 𝑘𝑡,𝑥

2 + 𝑘𝑡,𝑦
2

Angle of incidence 𝜙
Dispersion relation 

𝑘 = 𝑛𝜔
𝑐

x

y

ni nt
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Dielectric – Dielectric interface

Finally: solve for 𝑘𝑡,𝑦 with 𝑘𝑡,𝑥
2 = 𝑘𝑖,𝑥

2

𝑘𝑡,𝑦
2 =

𝑛𝑡𝜔

𝑐

2

−
𝑛𝑖𝜔

𝑐

2

sin2 𝜙

𝑘𝑡,𝑦= ±𝑖𝑘𝑡

𝑛𝑖
2

𝑛𝑡
2 sin2 𝜙 − 1 = ±𝑖𝛽𝑘𝑡

Transmitted plane wave:  

𝐸𝑡 = 𝐸0 𝑒−𝛽𝑘𝑡𝑦𝑒𝑖𝑘𝑡,𝑥𝑥 −𝑖𝜔𝑡

For 𝜙 = sin−1 𝑛𝑡

𝑛𝑖
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Acceleration with evanescent fields in vacuum

Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface, M. 
Kozák et. al., Optics Express 25 (2017), S. 19195-19204

𝑣𝑝ℎ =
𝑐

𝑛 sin𝜙
𝑣𝑒 = 𝑐𝛽 Γ =

𝑐

𝜔 𝑛2 sin2 𝜙 − 1

Γ =
1

2𝜋
𝛾𝛽𝜆

Phase matching:                                  Decay length 
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Acceleration with evanescent fields in vacuum

Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface, M. 
Kozák et. al., Optics Express 25 (2017), S. 19195-19204

𝑣𝑝ℎ =
𝑐

𝑛 sin𝜙
𝑣𝑒 = 𝑐𝛽 Γ =

𝑐

𝜔 𝑛2 sin2 𝜙 − 1

Γ =
1

2𝜋
𝛾𝛽𝜆

Phase matching:                                  Decay length 

Germanium structure
Silicon structure

Control only via refractive index n and incidence angle φ
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Fields at dielectric gratings

Assume infinite plane grating
of periodicity λP

Diffracted light creates spatial 

harmonics 𝑘||
𝑛 = 𝐾 + 𝑛𝑘𝑃

With:

𝐾0 incident wave vector

𝐾 component parallel to 
surface

𝑘|| parallel diffracted 

component

𝑘⊥ perpendicular diffrected

component 
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Fields at dielectric gratings

Assume infinite plane grating
of periodicity λP

Diffracted light creates spatial 

harmonics 𝑘||
𝑛 = 𝐾 + 𝑛𝑘𝑃

With:

𝐾0 incident wave vector

𝐾 component parallel to 
surface

𝑘|| parallel diffracted 

component

𝑘⊥ perpendicular diffrected

component 

Simplified case
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Fields at dielectric gratings

Grating fields can be described as: 

 𝐴  𝑟, 𝑡 =  

𝑛=−∞

∞

𝐴𝑛 𝑒𝑖(𝑘
⊥
𝑛𝑧+𝑘||

𝑛𝑟 −𝜔𝑡+𝜃)

 total field is comprised of a series of spatial harmonics

For phase matching, electrons (𝑣 = 𝛽𝑐) and the grating mode (𝑣𝑝ℎ =
𝜔/𝑘|| cos𝜙) have to have the same speed:

𝑘|| =
𝜔

𝛽𝑐 cos 𝜙
=

𝑘0

𝛽 cos 𝜙

with the dispersion relation 𝑘0 = 𝜔/𝑐.

Assuming particle trajectory is parallel to grating vector kP , and laser is 
incident perpendicular on grating surface -> 𝐾= 0

Synchronicity condition: 𝜆𝑝 = 𝑛𝛽𝜆



CAS Sesimbra, March 2019

Electron light interaction

net acceleration of 1.1 GeV/m
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Fields and forces at dielectric gratings

Using 𝑘|| and 𝑘
⊥

in Ampere's and Faraday's laws, we obtain: 

𝐸 =

𝑖𝑐𝐵𝑦/  𝛽 𝛾

𝐸𝑦

−𝑐𝐵𝑦/  𝛽

𝐵 =

𝑖𝑐𝐸𝑦/  𝛽 𝛾

𝐵𝑦

𝐸𝑦/  𝛽  𝛾

From these fields we can calculate the Lorentz force:

 𝐹 = 𝑞 𝐸 +  𝑣 × 𝐵 = 𝑞

𝑖𝑐𝐵𝑦/  𝛽  𝛾 + tan𝜙𝐸𝑦

0
−𝑐𝐵𝑦 1 −  𝛽2 /  𝛽 + 𝑖 tan𝜙𝐸𝑦/ 𝛾

 𝐹 = 𝑞

𝑖𝑐𝐵𝑦/ 𝛽𝛾

0
−𝑐𝐵𝑦/𝛽𝛾2
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Acceleration at dielectric gratings

Fields of a dielectric laser 
accelerator based on a one 
sided grating structure.
Depicted are 3 moments in 
time, t = 0 (a, d), t = π/2 (b, 
e), t = π (c, f)

Electrons injected in 
different phases experience 
different fields:
1: Acceleration
2: Deceleration
3: Deflection to structure
4: Deflection to vacuum

left: first spatial harmonic
right: third spatial harmonic

-> 1/3 decay length

𝜆𝑝 = 𝑛𝛽𝜆
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Acceleration at dielectric gratings

Fields of a dielectric laser 
accelerator based on a one 
sided grating structure.
Depicted are 3 moments in 
time, t = 0 (a, d), t = π/2 (b, 
e), t = π (c, f)

Electrons injected in 
different phases experience 
different fields:
1: Acceleration
2: Deceleration
3: Deflection to structure
4: Deflection to vacuum

left: first spatial harmonic
right: third spatial harmonic

-> 1/3 decay length

𝜆𝑝 = 𝑛𝛽𝜆
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Implications of these forces and fields

• There is a transversal force component

• At this geometry the transversal position of the electrons is 
non recoverable, due to the evanescent nature of the fields

• There is no light speed mode, a mode capable of accelerating 
𝛽 = 1 electrons, in the case of a single sided grating, since the 
solution would require a linearly increasing electric field 
extending to infinity
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Solution: double sided grating

Adding a second grating, inverted, on the other side, creates
a symmetric field with either a cosh or sinh mode.
While deflecting forces are not mittigated, the symmetric 
field profile can be used to confine the electron beam.
More later with Alternating Phase Focusing (APF)

Bonus: double sided structures support speed of light mode
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Galaxie: Using multiple modes

Stable Charged-Particle Acceleration and Focusing in a Laser Accelerator Using
Spatial Harmonics, B. Naranjo et. al., PRL 109, 164803 (2012)
Animations: http://rodan.physics.ucla.edu/PhysRevLett.109.164803/

A synchronous mode 
is used for acceleration
while an asynchronous 
mode confines the 
bunches
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Simulations

We use different simulation tools to compute the 
characteristics of out accelerating devices:

• Finite Difference Time Domain (FDTD) code to calculate exact fields

• The resulting fields can be broken down into kicks per period to 
approximate the accelerator

• For special cases we use a PIC implementation to look at wakefields in 
dielectric accelerators

Electron tracking:

• Integrate computed kicks

• Runge-Kutta motion solver (with spacecharge)

• PIC code for self consistent solution


