

Photocathode requirements and challenges for ultrafast electron scattering

Renkai Li Oct 15, 2018, Santa Fe, NM

- Photocathode requirements and challenges for UES
 - UED: single-shot, high rep-rate
 - UEM: extremely low emittance in SRF
 - fs EELS: pushing the longitudinal emittance
- Summary and outlook

SLAO

SLAC

Science outcome: See e.g. M. Chergui and A. H. Zewail, *ChemPhysChem* 10, 28 (2009); R. J D. Miller, *Science.* 343, 1108 (2014) and etc. ³

Benefits with MeV electrons

- Tremendous advances with keV
 UEDs in the past decades
- Significant Benefits with MeV e-

- X. J. Wang, Z. Wu, H. Ihee, PAC'03, 420-422 (2003).
- P. Musumeci and R. K. Li, ICFA BD Newsletter No. 59 (2012).

MeV UED at SLAC

SLAC

Resolving ultrafast phase transitions -Science 360, 1451 (2018)

Bond-breaking & nuclear wavepacket passing through conical intersections - Science 361, 64 (2018)

30-40 experiments / yr

Solid state: nano-scale, 2D materials, diffuse scattering, strongly correlated system, functional material

Gas-phase: sequential double-dissociation, roaming reaction, ring opening

Liquid-phase: soon 5

State-of-the-art keV UEDs

Guns and photocathodes for MeV UEDs

SLAC

Cooled semiconductor cathodes in DC gun + booster

Metallic or semiconductor cathodes in SRF gun

-SLAC

Signal level roughly scales *linearly* with beam brightness

Processes	frep	Photocathodes
Irreversible, high-energy density	Single-shot	to reach highest B_{6D}/f_{rep}
Reversible, relatively strong pump	Up to kHz	pulsed gun
Reversible, weak pump, gas/liquid flow, nano-diffraction	Up to MHz	CW gun

Requirements for UEM

SLAC

Reaching atomic-level spatial resolution is the priority

Operation mode	Beams
stroboscopic	200-300 kV UEM: ~1 e- per pulse, ϵ_n <1 nm-rad, 200 fs pulse MeV UEM: similar charge and ϵ_n , can reach 10 fs
single-shot	10 ⁶ -10 ⁸ e- per pulse, similar ϵ_n

Cathodes for keV UEM

Kieft et al. Struct. Dyn. 2, 051101 (2015)

Cathodes for MeV UEM

Stability: toward 10⁻⁵ in amplitude High gradient: up to 40 MV/m High beam energy: 4 MeV Flexibility: ~100 ps bunch length High rep-rate: up to 200 MHz QWR geometry, 4.5 K operation Challenges: gradient, cathode

VHF SRF gun as a promising candidate for UEM w/ atomic spatial resolution

• Requires $\epsilon_n < 1$ nm-rad

- e.g. <5 um spot size and 0.2 um/mm intrinsic emittance

- >1 pC charge in single-shot mode
 - 1 pC from few um spot: need high QE to avoid heating effect

Reliable operation of Mg cathode in SRF Gun II at ELBE HZDR

> R. Xiang et al, THPMF039, IPAC2018.

Requirements for fs EELS

JLAC

Pushing the *longitudinal emittance* of photocathodes

Sub-nm-rad emittance from small emission area

SLAC

ACS Photonics 3, 611 (2016)

Cathodes in extremely high fields

³ mm

meV energy resolution

O. L. Krivanek et al., J. Phys.: Conf. Ser. 522, 012023 (2014)

More cathode options for UED

- Helpful discussions with Pietro Musumeci, Daniele Filippetto, Jared Maxson, Theo Vecchione and many others
- SLAC UED/UEM team (X. J. Wang etc.) and collaborators
- Strong support from SLAC management. Technical support from SLAC AD, TID, and LCLS
- Work supported in part by the U.S. Department of Energy Contract No. DE-AC02-76SF00515 and the SLAC UED/UEM Initiative Program Development Fund.

- UES are demonstrated tools with transformative impacts, complementary and synergistic with XFEL
- Photocathode improvements will benefit UES

A few near-term items on the wish-list: In extremely high launching field, in high gradient SRF gun, extremely small initial emittance, meV energy spread

• New capabilities will be enabled by new photocathodes

Thank you for your attention!

Blank divider page

INSERT PREFERRED IMAGE AS BACKGROUND – INSTRUCTIONS: 1: Click "Insert" from menu and choose "Picture" to select image 2: Once image is inserted, right-click image and choose 'Send to Back'