Laser-triggered nano-emitters for femtosecond pulse generation from flat surfaces

Daniele Filippetto
Oct 15th, 2018
P3 meeting

Frontiers in ultrafast science with relativistic beams

Goal: Ultrafast dynamics with high spatial resolution

Challenge: limited brightness

Degeneracy parameter (sub-ps beams)

$$\delta = N_e \left(\frac{\lambda_c}{2\pi\epsilon_n}\right)^2 \le 10^{-4} \qquad L_c \frac{\sigma_{p_x}}{mc} = \frac{\lambda_c}{2\pi}$$

$$\sigma_x \frac{\sigma_{p_x}}{mc} = \epsilon_{nx}$$

- Increase average N_e/s, new electron sources
 - higher flux, average brightness
- Increase δ, novel photo-emitters
 - nanoemitters, engineered cathodes with low MTE

The LBNL High repetition rate VHF gun is a unique source of high brightness & high flux electron beams

Nucl. Instr. & Meth A 599, 9 (2009) Phys. Rev. ST Accel. Beams 15, 103501 (2012) Phys. Rev. ST Accel. Beams 18, 013401 (2015) Appl. Phys. Lett. 107, 042104 (2015)

Tip or flat?

$$B_{6D} = \frac{Q}{\pi^3 \epsilon_n^2 \sigma_t \frac{\sigma_E}{mc^2}} = \frac{2\sqrt{2\pi}}{\pi^2} \frac{J}{\frac{\sigma_{p_{\perp}}^2}{(mc)^2} \frac{\sigma_E}{mc^2}}$$

$$J_{sat,2D} = \frac{I_0}{9\pi} \sqrt{\frac{2}{R}} \left(\frac{eE_0}{mc^2}\right)^{\frac{3}{2}}$$

D. Filippetto et. al., PRSTAB 17, (2014) 024201

Plasmonic-enhanced multiphoton photoemission: Nano-holes and nano-grooves

R. Li, et al., PRL 110, 074801 (2013)

A. Polyakov et al., PRL 110, 076802 (2013)

<u>Transverse momentum spread is</u> <u>increased compared to flat cathodes</u>

Plasmonic-enhanced multiphoton photoemission: plasmonic lenses

SPPs travel along the surface to interfere constructively at the center.

The central spot caused by the interference occurs in a flat region with subwavelength dimensions

Bull's eye simulations

Fabrication processes

Focused ion beam milling

1. Evaporate gold

2. FIB mill

E-beam
lithography
+ template
stripping

- 1. Spin coat e-beam resist
- 2. E-beam exposure
- 3. Evaporate gold
- 4. Apply/cure epoxy
- 5. Peel off

EBL process yields smoother surfaces

Cathodoluminescence spectromicroscopy

SEM Cathodoluminescence (CL)

- Map of SPPs modes
- SEM spatial resolution (several nm)
- Hyperspectral
- Angle-resolved

CL setup

Mapping the plasmonic interference

FIB

EBL

500 nm

Far field measurement by angle-resolved CL

Angular distribution similar to model

First attempt of characterization of photoemission from BE

SEM

FIB sample for 800 nm

500 µm

Dan Durham, LBNL/UCB Xinglai Shen, UCLA Rafi Hessami, UCLA

Enhancement under linear polarization

Parameters:

- Acceleration voltage: 26 kV
- Laser pulse energy: 0.1 10 µJ
- Rep rate: 500 Hz
- Spot size: 100 μm
- Pulse length: 50-100 fs
- Linear polarization

4-photon photoemission from gold at 800 nm

Electron bunches on screen for varying laser pulse energy

J = CIⁿ for n-photon photoemission

$$C \approx a_n \left(\frac{4\pi m_e e}{h^3}\right) \left(\frac{e}{h\nu}\right)^n (1 - R_{\nu})^n (\text{nh}\nu - e\Phi)^2$$

[Assuming $(nh\nu - e\Phi) = 0.8 \text{ eV}$

 $\phi \sim 5.4 \text{ eV}$ for Au in literature [Michaelson, J. App. Phys. 48 1977]

 R_{ν} ~ 98 % for Au in literature [Bass & Stryland, Handbook of optics, 2000]

$$a_4 = 10^{-42.97 \pm 0.85} \left[\left(\frac{cm^2}{A} \right)^4 \right]$$

$$\left| \left(\frac{cm^2}{A} \right)^4 \right|$$

Spatial variation in signal

- Manual scan for initial test
- Charge measured at a few points of interest

SEM image after test

Next:

- Automatic scan of entire area with smaller beams
- Laser energy tailoring and higher repetition rates
- Radial Vs azimuthal polarization

Dan Durham Xinglai Shen Rafi Hessami, UCLA

LBNL setup is coming online

- A 30kV gun has been fabricated and recently commissioned
- Nano-photo-emitter test bed
- Ultrafast fiber laser at 1030nm available for tests (1uJ at 1MHz)

Conclusions

- R&D on nano-photo-emitters are ongoing and could further increase the electron beam tranverse coherence and decrease the focal spot.
- The final goal is to use such cathodes for ultrafast science at the nanoscale
- Collaboration team between ATAP and Molecular Foundry/UCB enable access to nanofabrication and characterization tools
- First cathodes fabricated are currently being tested for photoemission
- New designs for cathodes in transmission, and with simpler alignment.

Nano-Team and collaborators

Daniele Filippetto (Project leader/LBNL)

Dan Durham (UC Berkeley/LBNL)

Andrew Minor NCEM director (MF/UCB)

Fuhao Ji (LBNL)

Stefano Cabrini (NanoFab Facility director (MF/LBNL)

Fabrizio Riminucci (La Sapienza/LBNL)

- UCLA cathode tests at 800 nm (Xinglai Shen, P. Musumeci)
- University of Rome "La Sapienza", design and test of novel nanostructured photoemitters
- STROBE
- DOE Office of Science, Basic Energy Sciences

