



R. Ganter, S. Bettoni, R. Gaiffi, M. Huppert, C. Kittel, E. Prat, T. Schietinger, A. Zandonella

## Photocathodes for SwissFEL



- SwissFEL Introduction
- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



#### • SwissFEL Introduction

- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



Hard X-Ray FEL 740 m Long First Beam End 2016

**PSI West** 

SwissFEL

**PSI East** 

my fighty. General All



#### Aramis

Linear polarization, variable gap, in-vacuum Undulators

First users 2018

#### **Athos**

Soft X-ray FEL, variable polarisation First users 2021

#### **Aramis Main parameters**

| Repetition rate             | 100 Hz        |
|-----------------------------|---------------|
| e <sup>-</sup> Bunch charge | 10-200 pC     |
| e <sup>-</sup> Energy       | 2.1 - 5.8 GeV |
| Pulse duration              | 20 fs         |
| Photon energy               | 2 – 12.4 keV  |



## SwissFEL Electron Gun and Loadlock





Cathode plug

### SwissFEL RF Photoinjector

SwissFEL RF Photoinjector: S band, 2.5 Cell; 7 MeV; 100 MV/m; 100 Hz; 10 - 200 pC



Exchangeable cathode plug(\*)

(\*) CERN design: CLIC Note 303 (1996)





## Loadlock chamber for SwissFEL



Vacuum suitcase connected to the load-lock, showing the cathode transfer principle and the storage carroussels..



- SwissFEL Introduction
- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



#### Loadlock installed in 2013 at the SITF:

=> Recipe to get reproducible copper  $QE_{Cu} \sim 10^{-4}$ => First test of  $Cs_2$ Te Cathodes:  $QE \sim 10^{-2}$ 





• 2015: Decision to operate SwissFEL only with Cs<sub>2</sub>Te

• 2016: Gun + Loadlock moved to SwissFEL



## SwissFEL Cathode History 2016-2018

#### From October 2016 to July 2017: Cathode #32





Cathode#32: Cs<sub>2</sub>Te by co-evaporation ; very thin layer < 20nm

```
No QE decay in 10 Months
```



Why was cathode exchanged ?

#### Electron Beam uniformity issues



 $\Rightarrow$  Exchanged cathode on July 21<sup>st</sup> 2017

 $\Rightarrow$  Cs<sub>2</sub>Te detached at some area (dark spot visible by eye)





#### From October 2016 to July 2017: Cathode #31

Averaged QE ~ 0.6 %



## Cathode imaging with e-beam on YAG



No defects clearly visible

#### Courtesy of N. Hiller





18.08.2017 Uniformity  $\delta_{\rm QE}/\rm QE \simeq 15~\%$ 



6 Months

Averaged QE dropped by 40% after 6 Months

or after ~ 15 mC of charge extraction  $P_{cathode} < 1.10^{-9}$  mbar (1.1e-11 mbar at the pump) Influence of Cu substrate ?

Lifetime until QE~0.1% > 1 year

Cathode #31 (Cs<sub>2</sub>Te) 10 Hz; 200 pC 100 MV/m





гаде 13





 $\varepsilon_{intrinsic}$ = 145 nm.rad

Charge 200 pC; 300 MeV

#### Measured slice emittance close to Intrinsic emittance !

~ Copper emittance (Phys. Rev. ST Accel. Beams 18, 043401 (2015))

Courtesy of E. Prat



t (ps)

Laser Profile

## Reducing microbunching gain with Cs<sub>2</sub>Te

#### Beam longitudinal phase space after compression



Results from SITF 2014 - Courtesy of S. Bettoni



Small microbunching gain at SwissFEL

- Cs<sub>2</sub>Te smooths out the laser profile ripples (more than Cu)
- Microbunching instabilities seems small at SwissFEL
  - => Slow cathodes limits microbunching instability gain ?

#### BUT

- LCLS Simulations showed that Microbunching comes from "shot noise" even if laser profile is ideally flat !
- SACLA observed microbunching instabilities with thermionic gun !





- SwissFEL Introduction
- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



## SwissFEL Cathode Preparation system





## SwissFEL Cathode Preparation system





# Aperture (in front of cathode)

Quartz micro-balance





Cs<sub>2</sub>Te layer (ø=1cm; 40 nm)

- successive deposition of Te and then Cs (recipe from CERN: CERN - CLIC Note 299 – E. Chevallay)

- Coevaporation of Cs and Te

PAUL SCHERRER INSTITUT Cs<sub>2</sub>Te co-evaporation on Cu Plug

Co-evaporation Cs and Te on Cu\_28;  $V_{\text{anode}}\text{=}100V$  - 17.05.2018



Recipe:

- Cu plug annealed 10 h at 250 deg C
- Co-evaporation while monitoring photocurrent

#### **Difficulty:**

- Control of stoichiometry
  - (Cs source heats Te source !)
- No independent Cs thickness monitoring





- SwissFEL Introduction
- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



Co-evaporation of Cs and Sb

## Motivation for Cs<sub>3</sub>Sb :

- illuminate photocathode with 532 nm
  - => Better laser shaping possible
  - => Less optics degradation



Cs<sub>3</sub>Sb compound:  $E_{gap}=1.6 \text{ eV}$  $E_{e-affinity}=0.45 \text{ eV}$ 

 $\Phi_{eff}=E_{gap}+E_{e-affinity}-E_{schottky}=1.7 \text{ eV}$ 





## Co-Evaporation Cs & Sb



#### Recipe:

Sb heating power has to be reduced ! Deposition rate Sb: 0.01 - 0.02 Å/s Deposition rate Cs: 0.1 Å/s  $T_{cathode}=120^{\circ}C$ , Pressure increases to 1.5e-8 mbar DC illumination with 532nm LED







Partial pressure (torr)





QE in gun factor 2 larger due to electric field.



- SwissFEL Introduction
- Photocathode Experience at SwissFEL
- Cs<sub>2</sub>Te coating (successive, co-evaporation)
- Cs<sub>3</sub>Sb coating attempts
- Conclusion and perspectives



- Cs<sub>2</sub>Te experience with SwissFEL user operation rather positive
- Lifetime seems > 1 year with 30 mC/year, 100 MV/m, 5.0\*10<sup>-10</sup> mbar
- Beam quality: slice emittance <300nm; small microbunching instabilities ?</p>
- First Cs<sub>3</sub>Sb coating had acceptable QE (>0.1%) but lifetime much too short

Perspectives:

- Photocathodes development with sensitivity to green light
  - Cs<sub>2</sub>Te with Ge doping to reduce bandgap (532nm)
  - CdTe with Cs activation to reduce electron affinity

#### European Photocathode Workshop 11-13 September 2019 – PSI (Switzerland) <u>https://indico.psi.ch/internalPage.py?pageId=0&confId=6746</u>



#### EWPAA 2019: European Workshop on Photocathodes for Particle Accelerator Applications

11-13 September 2019 Paul Scherrer Institut; CH-5232I Villigen PSI; Hörsaal PSI Bildungszentrum: OSGA/EG06 Europe/Zurich timezone

Walcome to FWDAA 20101

Romain Ganter (PSI)

| olleagues,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r pleasure to announce that the European Workshop on Photocathodes for Particle Accelerator Applications (EWPAA 2019), will be held at the Paul Scherrer<br>It, Switzerland, from September 11 to 13, 2019.                                                                                                                                                                                                                                                                                       |
| te you to participate to this workshop with focus on the recent progress in research and development of photocathodes for accelerator applications. Contributions are<br>ie from all related topics, including operational experience, preparation, instrumentations, theoretical modelling, industrial applications and novel materials. The scientific<br>nme of the workshop will consist of invited talks and contributed presentations, either in the form of oral presentations or posters. |
| rkshop will be held from Wednesday noon to Friday noon with the Wednesday afternoon assigned for the poster session and Thursday afternoon for a visit at the<br>EL facility and the photocathode laboratory as well as the workshop dinner.                                                                                                                                                                                                                                                      |
| ation and abstract submission will be opened in March 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ific Programme Committee<br>(ühn (HZB)<br>In Kamps (HZB)<br>akes (UKRI STFC)<br>Ies (UKRI STFC)<br>Iang (HZDR)<br>Ila Lorusso (INFN Lecce)                                                                                                                                                                                                                                                                                                                                                        |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



RGA mass spectrum in the evaporation chamber: Sb and Cs after 100 h baking at 250 deg C Total pressure 9.e-11 mbar - 17.07.2018





SwissFEL Aramis FEL

#### Aramis FEL pulses:

E<sub>Photons</sub>: max 12.4 keV

Achieved FEL Pulse Energy: 570 μJ at 3 keV 400 μJ at 6 keV ... still under improvement



