Thermal Degradation of Alkali Antimonide Cathodes

Zihao Ding,¹ Siddharth Karkare,² Jun Feng,² Daniele Filippetto,² Matthew Johnson,² Steve Virostek,² Fernando Sannibale,² James Nasiatka,² Mengjia Gaowei,³ John Sinsheimer,³ Erik Muller,¹ John Smedley,³ and Howard Padmore² ¹Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, USA ²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³Brookhaven National Laboratory, Upton, New York 11973, USA

PHYSICAL REVIEW ACCELERATORS AND BEAMS **20,** 113401 (2017)

APEX Photoinjector

F. Sannibale *et al.*, Advanced photoinjector experiment photogun commissioning results, Phys. Rev. ST Accel. Beams **15**, 103501 (2012).

Frequency (7 th sub-harmonic of 1.3 GHz)	186 MHz
Operation mode	CW
Gap voltage	750 kV
Field at the cathode	19.47 MV/m
Q ₀ (ideal copper)	30887
Shunt impedance	6.5 MΩ
RF Power @ Q ₀	87.5 kW
Stored energy	2.3 J
Peak surface field	24.1 MV/m
Peak wall power density	25.0 W/cm ²
Accelerating gap	4 cm
Diameter/Length	69.4/35.0 cm
Operating pressure	$\sim 10^{-10} 10^{-9} \text{ Torr}$

APEX Photoinjector

APEX Nosecone Heating

F. Sannibale *et al.*, Advanced photoinjector experiment photogun commissioning results, Phys. Rev. ST Accel. Beams **15**, 103501 (2012).

Ternary Co-evaporation of cathodes for APEX

distinctive purple color cathodes

(a)

10

10

600

400

y in nm 200

0 0 200 x in nm

(b)

10

600

400

y in nm 200

0 0 200 x in nm

- Simultaneous deposition of Sb, K, Cs (90C)
 - 4 parameter initial search for correct conditions
- Very robust and repeatable method
- 7% QE is routinely achieved @ 532 nm

JOURNAL OF APPLIED PHYSICS 121, 044904 (2017)

Near atomically smooth alkali antimonide photocathode thin films

Questions

- How is cathode lifetime affected by operating temperature
- What is the mechanism of thermal damage
- Can the QE be recovered in some way

Method

- Prepare many cathodes by co-deposition (K₂CsSb, Cs₃Sb)
 - measure QE (wavelength)
 - refine method to make cathodes as close to identical as possible
- Measure QE (time) at defined temperature
- Repeat for range of temperatures
 - 1 cathode for each temperature....a tedious measurement

QE decay curves of K₂CsSb at 532 nm

Initial QE in range 4.5 – 5.5% and normalized to 5%

Lifetime of K₂CsSb at 532 nm

K₂CsSb: Full recovery of yield by re-cesiation: 100°C for 1 hr

100°C for 1 hour

- Factor of 2.7 loss in QE @ 575 nm, 1.4 @ 350nm
- Re-cesiation recovers ~100% of QE

K₂CsSb: Partial recovery of yield by re-cesiation: 100°C for 12 hrs

100°C for 12 hrs

- Factor of 7 loss @ 575 nm, 3 @ 350 nm
- Re-cesiation recovers only a fraction of initial QE
 - 40% at 575 nm and 53% at 350 nm

K₂CsSb: 100° C and 1.5 hrs induces structural changes

- (111) indicates strain or disorder
- Large (111) intensity after heating indicates disorder
- crystal symmetry remains the same after heating

- Thickness reduced by 5% after heating
- Out of plane roughness similar after heating

- x-ray induced x-ray fluorescence
 - Indicates loss of Cs
 - No loss of K or Sb

Summary: Thermal decomposition studies

- Safe operating range with K₂CsSb up to around 55°C
 - Slightly higher than APEX cathode when under full power
- Decomposition via loss of Cs, and partial recovery possible
- Cs₃Sb much less stable, NaKSb much more stable

Workfunction Imaging using LEEM

- S. Karkare*, S. Emanian, G. Gevorkian*, H. A. Padmore (ALS, LBNL: * now ASU)
- A. Galdi (Cornell)
- A. Schmid (Molecular Foundry, LBNL)

- Emittance depend on physical and chemical roughness
 - Physical roughness UHV AFM
 - Chemical roughness KPFM, LEEM and PEEM

Work function variation for K₂CsSb and Cs₃Sb

KPFM measurements difficult and somewhat unreliable

0.100

0.000

100 nm

Use LEEM to measure work function

0.070

Spin Polarized Low Energy Electron Microscopy (SPLEEM)

Unlocking Bloch-type chirality in ultrathim magnets through uniaxial strain

Gong Chen ™, Alpha T. N'Diaye, Sang Pyo Kang, Hee Young Kwon, Changyeon Won, Yizheng Wu, Z. Q. Qiu & Andreas K. Schmid ™

A flange-on type low energy electron microscope

K. Grzelakowski^{a)} and E. Bauer Physikalisches Institut, Technische Universitaet Clausthal, D 38678 Clausthal-Zellerfeld, Germany

(SP)LEEM measurements of work function

LEEM measurement of work function of Cs₃Sb

Same amplitude, much lower spatial frequencies at 70°C (lower transverse fields)

Summary: work function imaging using LEEM

- 20 nm spatial resolution (2 nm)
- 5 meV work function 'noise'
- Chemical potential roughness causes strong lateral potential gradients that degrade emittance
- Strong dependence of gradients on deposition temperature
- More work to be done on Cs3Sb at different growth temperatures, rates, and other antimonides

Aberration corrected LEEM, 2 nm resolution

Ultramicroscopy

Volume 110, Issue 7, June 2010, Pages 852-861

A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design

R.M. Tromp ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\sim}$ J.B. Hannon ^a, A.W. Ellis ^a, W. Wan ^b, A. Berghaus ^c, O. Schaff ^c

The best probe should be PEEM (photon energy).....1st attempt not successful due to low flux

New coherent supercontinuum source being tested.....a Fowler plot / pixel at few nm resolution!

QUESTIONS