

Overcoming challenges related to the operation of photocathodes in SRF photoinjectors

Julius Kühn

High Brightness Electron Beams Institute for Accelerator Physics (FG-IA)

16.10.2018

Photocathode Physics for Photoinjectors (P3)

October 15-17, 2018 Santa Fe, New Mexico

BERLIN ENERGY RECOVERY LINAC PROTOTYPE: \LERLinPro

Target parameters flexible and geared towards light source application

HZF

LbERLinPro

9th International Particle Accelerator Conference ISBN: 978-3-95450-184-7 IPAC2018, Vancouver, BC, Canada JACoW Publishing doi:10.18429/JACoW-IPAC2018-THPMF034

STATUS REPORT OF THE BERLIN ENERGY RECOVERY LINAC PROJECT bERLinPro*

M. Abo-Bakr[†], W. Anders, A. Büchel, K. Bürkmann-Gehrlein, A. Bundels, Y. Bergmann, P. Echevarria, A. Frahm, H.-W. Glock, F. Glöckner, F. Göbel, B. Hall, S. Heling, H.-G. Hoberg, A. Jankowiak, C. Kalus, T. Kamps, G. Klemz, J. Knobloch, J. Kolbe, G. Kourkafas, J. Kühn, B. Kuske, J. Kuszynski, A. Matveenko, M. McAteer, A. Meseck, R. Müller, A. Neumann, N. Ohm-Krafft, K. Ott, E. Panofski, L. Pichl, F. Pflocksch, J. Rahn, M. Schmeißer, O. Schüler, M. Schuster, J. Ullrich, A. Ushakov, J. Völker, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

Start of operation in 2019!

Beam dump

PHOTOCATHODE CHALLENGES FOR \bERLinPro

High quantum efficiency Cs-K-Sb photocathodes

high bunch charge and current up to 100 mA

Smooth substrate and photocathode

low field emission and low emittance

Reproducible growth procedure & robust lifetime

• necessary for accelerator operation

Photocathode transfer into superconducting RF photoinjector

- permanent UHV conditions during Cs-K-Sb photocathode transfer
- avoiding contamination of superconducting Nb-cavity

PHOTOCATHODE INFRASTRUCTURE

PHOTOCATHODE INFRASTRUCTURE

HZB

PHOTOCATHODE PRERARATION AND ANALAYSIS SYSTEM

Cs-K-Sb preparation chamber:

Preparation system:

- Sample heating and cooling, argon sputtering
- Aperture to cover sample and measure photocurrent
- Sb-effusion cell
- Load lock for SAES alkali metal dispensers (17 mm)

Analysis methods:

- Spectral response from 370 700 nm
- X-ray photoelectron spectroscopy

Plans for the future:

- More reliable customized manipulator
- "Momentatron 2.0" for emittance studies
- Study of optcial properties of the photocathode

M. A. H. Schmeisser, Ph.D.-Thesis, HU Berlin, to be submitted
N. Al-Saokal, L. Bedau, Research interns, 2018.
H. Kirschner, Master-Thesis, HU Berlin, 2017.

PHOTOCATHODE PRERARATION AND ANALAYSIS SYSTEM

Cs-K-Sb preparation chamber:

Proceedings of ERL2015, Stony Brook, NY, USA

THPTHL072

CsK₂Sb PHOTOCATHODE DEVELOPMENT FOR bERLinPro*

M.A.H. Schmeißer#, A. Jankowiak, T. Kamps, J. Kühn, Helmholtz-Zentrum Berlin, Germany

TUPAB028

Proceedings of IPAC2017, Copenhagen, Denmark

MEASURING THE SPECTRAL RESPONSE OF Cs-K-Sb PHOTOCATHODES FOR bERLinPro*

H. Kirschner, A. Jankowiak, T. Kamps, J. Kuehn[†], M. A. H. Schmeißer Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany

DEVELOPMENT OF A HIGH QE PHOTOCATHODE GROWTH PROCEDURE

- Studied sequential growth recipe
- Developed a Cs + K co-deposition recipe
 - No complete reaction of K and Sb
 - No extra Cs deposition saves time
 - Smoother photocathodes
 - Substrate temperature critical parameter
 - Sb layer thickness influence QE and lifetime

TABLE I. Chemical composition, thickness of the initial Sb layer, and final QE of the sequentially and co-deposited samples. The QE is measured at 2.33 eV, as-prepared.

Sample		Sb layer (nm)	\mathbf{Sb}	K	\mathbf{Cs}	QE (%)
P006	K-Sb	10	1	2.3		
	Cs-K-Sb		1	1.8	1.4	4.8
P007	K-Sb	10	1	2.7		
	Cs-K-Sb		1	2.4	0.8	1.6
P009	Cs-K-Sb	10	1	1.9	1.4	2.6
P013	Cs-K-Sb	30	1	1.5	2.3	5.6
P014	Cs-K-Sb	30	1	0.5	1.8	7.7
P015	Cs-K-Sb	30	1	1.0	2.3	7.2

Cs₂KSb has higher QE than CsK₂Sb

PHOTOCATHODE PERFORMANCE AT LOW TEMPERATURES (LN2)

- Photocathodes operated at 80 K in the SRF Photoinjector
- Decrease of the QE at low temperatures was reported

No significant change in QE observed at low temperatures under excellent vacuum conditions

THE BERLINPRO SRF PHOTOINJECTOR TEST FACILITY AT HOBICAT

COPPER PHOTOCATHODE PREPARATION AND TRANSFER

Plug preparation

Plug selection and cleaning:

- Plug design developed in-house
- Snap-fastener mechanism on modified omicron sample holder
- Surface cleaning in UHV
- Transfer via vacuum suitcase to transfer system at the SRF photoinjector

HZB

Transfer

Cathode / Cavity Interface:

Insertion

9th International Particle Accelerator Conference ISBN: 978-3-95450-184-7 IPAC2018, Vancouver, BC, Canada JACoW Publishing doi:10.18429/JACoW-IPAC2018-TUPMF002

A Cu PHOTOCATHODE FOR THE SUPERCONDUCTING RF PHOTOINJECTOR OF bERLinPro *

J. Kuehn[†], N. Al-Saokal, M. Buerger, A. Frahm, A. Jankowiak, T. Kamps, G. Klemz, G. Kourkafas, S. Mistry, A. Neumann, N. Ohm-Krafft, M. A. H. Schmeisser, M. Schuster, J. Voelker Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (HZB), Germany P. Murcek, J. Teichert Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany

G. Kourkafas et al., in preparation

SEMICONDUCTOR PHOTOCATHODE PREPARATION AND TRANSFER

From a thin film in the lab to a functional device in the SRF photoinjector. Operation failed due to malfunction of the cathode insert. To be continued in bERLinPro...

CATHODE INSERT THERMAL CONTACT TEST STAND 2.0

HZB

Cooling performance w/o heating:

S. Ovsyannikov, HZB summer student program 2018

Mechanical and thermal stress tests of the cathode insert: avoid overheating in the gun!

Control system

٠

- photocathode preparation system
- high QE photocathodes
- operation with Cu cathode (hobicat)

- photocathode production system
- increase lifetime
- operation of Cs-K-Sb photocathodes (bERLinPro)

Team-Photocathode: Martin Schmeißer (PhD-Student), Nawar Al-Saokal (Master Student), Sonal Mistry (Postdoc), Andreas Jankowiak, Thorsten Kamps

Photocathode-Alumni:

S. Ovsyannikov (Summer student 2018), Leonard Bedau (Research intern 2018), Hans Kirschner (Master Thesis 2017), Zihao Ding (DAAD rise professional 2015) Susanne Schubert (Postdoc 2012-2014)

> High brightness electron beam group members: Guido Klemz, Georgios Kourkafas, Jens Völker

Engineering: Markus Bürger, Daniel Böhlick, Kerstin Martin

SRF-group: Michael Schuster, Jan Ullrich, Henry Plötz, André Frahm, Jens Knobloch, Axel Neumann

THANK YOU FOR YOUR ATTENTION!

P Helmholtz Zentrum Berlin Julius Kühn | Overcoming challenges related to the operation of photocathodes in SRF photoinjectors | 16.10.2018