Free-standing bialkali photocathodes using atomically thin substrates
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Abstract
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Enhancing the lifetime of
accelerator technology-
relevant photocathodes
while maintaining their
high quantum efficiency
has been a decadal
problem. Here, we
successfully deposited
Bialkali antimonide
photocathodes on free-
standing atomically thin
substrates of graphene.
This advances an ultimate goal of enhancing the
lifetime of photocathodes without sacrificing the high
quantum efficiency by using an atomically thin
protection layer.
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Driving Science Question

The required advances in cold
cathode performance requires
that radical improvements in
lifetime and efficiency be
achieved simultaneously.
Previous work has succeeded in
delivering increases in one, but at
considerable expense of the
other due to the competing
physical processes underlying
traditional approaches to

110 cathode design and optimization.

In pursuit of this goal, the unique

approach started here aims to decouple the competing mechanisms so
that both high efficiency and long lifetime can be achieved via
integration of atomically thin two dimensional (2D) nanomaterials with
high-performing existing photocathode technologies.
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Graphene, atomically thin
sheet of carbon, was directly
grown on copper metal
cathode as a protection layer.
We demonstrated for the first
time that photoemission is not
hindered by the presence of
graphene.

Furthermore, we found that
graphene protects metal
cathodes from residual gases
in the environment. Graphene
was able to protect metal
cathodes to the pressure of
200 Torr, which could be a
significant advancement
toward cathode transfers in a
near ambient condition.

FLiuatal Appl Phys Lot 110, 041607 (2017)

Work is supported by Laboratory Directed Research and Development (LDRD)

*Primary: hyamaguchi

; #Secondary: nmoody

Progress and Results
2018 J

K,CsSb photocathode deposition

on graphene (Photonis Scientific Inc.)
grap Overall QE maps

> B

Zrd ZZ . TR
QE (%)
~17 % QE achieved from K,CsSb on graphene
substrates. This was hlgTwerthan thaton
nickel substrate. Spot size is 0.2 mm.
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Metal mesh grid supports were used to prepare
free-standing graphene substrates. Note minimal
voids even after the photocathode deposition.
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regions were achieved for 2.5 eV photons. Spot size is 350 nm.
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XRD spectra indicated K,CsSb
crystal growth on graphene
Quantitative analysis of XRF
spectra resulted in elemental
composition of K, 5.Cs, ,¢Sb.

Signature feature for K,CsSb was observed
at ~2.4 eV (black arrow). Extracted work
functions were all consistent with a value
for K,CsSb, which were 1.84, 1.86, and 1.88
eV for graphene, SS, and Ni substrate
regions, respectively as shown in inset.
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In summary, bialkali antimonide
photocathodes were successfully grown on
freely suspended graphene substrates of
few-monolayer thickness. The large-area
F uniformity, quantum efficiencies, specific
spectral response features, and comparisons
to experimental reference standards and
calculation results all indicate a high
compatibility of the photocathodes with thin graphene layers. Additional material characterization using XRD and XRF
directly revealed grains of K2CsSb in such photocathodes when deposited on graphene, further supporting this
compatibility. Variations in the number of graphene layers, their stacking methods, and additional pre-deposition
annealing variations had small effects on the QE magnitudes of the resultant photocathodes, yet highlighted areas for
measurable improvements by minimizing defects in the graphene films. The results demonstrate that high QEs can be
achieved for K2CsSb on thin graphene substrates that are as thin as three atomic layers. This is a promising step toward
fabrication of photocathodes with enhanced lifetimes via atomically thin protection layers as well as photocathodes on
optically transparent yet electrically conductive substrates.




