Truncated Mean: Status and Future

Florian Herrmann

November 21, 2016

- ► idea:
 - after calibration time-bin signals / cluster signals follow Landau distribution
 - cut away large signals in accordance with truncation factor
 - \rightarrow gaussian distribution
 - requires time-bin calibration

- determine most probable TM signal by fitting gauss for each $\beta\gamma$ slice
- ► interpolate missing $\beta\gamma$ slices by fitting Aleph+TR function to this MPV

Current with all corrections and momentum cuts (4-6 tracklets)

LHC13bc - TRDSigVsBG (4-6 tracklets, mom. cuts, Eta&Ncls Corr)

Current wo corrections and momentum cuts (6 tracklets on

LHC13bc - TRDSigVsBG wo momentum cuts

Current wo corrections and momentum cuts (6 tracklets on

► Width of signal depends dominantly on number of cluster $\approx \frac{1}{\sqrt{N}}$, therefore fit gaussian to deviation from MPV

$$\frac{TMSignal(\beta\gamma,\eta,NCluster,Centrality,...)}{MPVFit(\beta\gamma)}$$

Figure 5.9: (Left) Scaled truncated mean signal and (right) the signal resolution as a function of the number of clusters.

- signal distribution is not really gaussian
 - solution: gauss fits only consider upper half of signals
 - but: still not really gaussian (reduced χ^2 especially for pions sometimes around 20 or greater)

- result: better estimator of MPV, difference to full gaus (max dev. around 5% and increased width)

- momentum cuts required (see above) (proton-pion)
- parametrization fit is unstable

First Problems: eta dependence (Lukas, Yvonne, Florian)

► eta dependence in signal (around 5%)

First Problems: eta dependence (Lukas, Yvonne, Florian)

eta dependence introduces bias in AlephFit

LHC13bc - EtaTPCtglVsBG

104

10

First Problems: eta dependence (Lukas, Yvonne, Florian)

- solution: eta map
- ▶ problem: correct to which value (Fit?, Mean?, BinMean?)
- reason? path length dependence?

 signal increases in each chamber with increasing cluster number (TRD meeting 22.06)

- solution: cluster map
- problem: correct to which value (Fit?, Mean?, BinMean?), corrections independent?
- reason: path length dependence?

- solution: cluster map
- problem: correct to which value (Fit?, Mean?, BinMean?), corrections independent?
- reason: path length dependence?

LHC13bc - TPCtglVsNCls (4-6 tracklets, mom. cuts)

Recent Problems: centrality dependence

ALICE

signal increases with increasing central collisions

Centrality dependence

Recent Problems: centrality dependence

ALICE

- solution: centrality map
- problem: correct to which value (most peripheral Bins?), corrections independent?

Recent Problems: cluster loss in LHC15n/o + bad resolution

- checks
 - gain? first checks by Luisa indicates no significant effect
 - intensity? no significant impact
 - in LHC150 centrality small effect peripheral data correspond to LHC15n
- next steps?

backup slides

PhD thesis Xiangou

PhD thesis Xiangou

Figure 5.8: Number of clusters as a function of the particle path length in the TRD.

PhD thesis Xiangou

Figure 5.9: (Left) Scaled truncated mean signal and (right) the signal resolution as a function of the number of clusters.

Gauss fit to slices

F. Herrmann

Gauss fit to slices

Gauss fit to slices

LHC13bc - Eta distribution (no mom. cuts)

Eta Dependence

LHC15n - Eta dependence (no mom. cuts, 6 tracklets)

LHC13bc -- Eta dependence for 6 tracklets (no mom. cuts)

LHC13bc - MeanSigVsBG (no mom. cuts, 6 tracklets)

LHC15n - Eta dependence for 6 tracklets (no mom. cuts)

F. Herrmann

LHC15o - TRDSigVsBG wo mom. cuts

LHC150 – Cluster (Centrality Intensity)

LHC15o - ClusterVsBG wo mom. cuts (6 Tracklets)

LHC13bc – MPVFit

LHC13bc - ClusterVsBG wo mom. cuts (6 tracklets)

LHC13bc - ClusterVsBG (6 tracklets, no mom. cuts)

F. Herrmann

LHC15n - TRDSigVsBG wo mom. cuts

F. Herrmann

LHC15n – Cluster (Intensity)

LHC15n - ClusterVsBG wo mom. cuts (6 tracklets)

LHC15n - ClusterVsBG (6 tracklets, no mom. cuts)

► charge dependence

