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The standard model of cosmology - ΛCDM

4.9% 

ordinary matter (baryons)

26.8% 

dark matter
68.3% 

dark energy

What is dark matter?

several ideas to test
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Modern cosmology: our profound ignorance with three digits of precision



Hypothetical fundamental particles may for dark matter
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Most popular hypothesis, weakly interacting massive particles   
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consequence of supersymmetry 

no evidence yet at Large Hadron Collider

no evidence from electron dipole moment searches

no widely accepted direct observation 

growing experimental effort in other hypotheses



Hypothetical QCD axion: a light particle that is cold and 

dense enough to contribute to dark matter  

mechanism to resolve strong-CP problem (Peccei and Quinn)

associated particle (axion) is dark matter candidate

mass range

as a frequency 
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2 / 500 GHzam c h 



Axion field couples to electromagnetism

modified QCD Lagrangian  A A E Bg  

A

linearize coupling around static -field

AE E

dark matter axions create microwave photons
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Scan narrowband cavity to search for resonant axion to photon 

conversion: haloscope (Sikivie 1983)
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axion line narrower than cavity
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Johnson-Nyquist 

and amplifier noise

tune -> wait and integrate -> tune



History of haloscopes searching for axioninc dark matter
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HAYSTAC: Haloscope At Yale Sensitive To Axion CDM
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standard haloscope scan rate: 𝑅 ∝ 𝑓−
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3 𝑔𝑎𝛾𝛾
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1 – 10 GHz at DFSZ

~20,000 yrs at quantum limit,

with one 9 Tesla magnet



quantum amplification and squeezing



JPAs: quantum-limited, tunable amplifiers
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JPA can squeeze, amplify noiselessly
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𝑉𝜔cav
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Transmission losses limit squeezing
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Squeezing to circumvent the quantum limit: 

modeling the squeezed state receiver
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SQ AMP

axion cavity

𝜅𝑎
𝜅𝑙
𝜅𝑚

loss

measure

overcouple: increase 

measurement port noise

squeezing reduces that noise

wideband axion sensitivityaxion

𝜅𝑎 ≪ 𝜅𝑙

axion: weak classical force



Scan rate enhancement, perfect efficiency
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Effect of losses on the scan rate
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simulated axion search



A mock-haloscope to experimentally test the SSR concept
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Squeezing reduces the noise without degrading the signal
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Squeezing favorably trades off peak sensitivity for bandwidth
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Search for a fake axion of unknown frequency
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aim to detect small excess power 𝑃fax ≪ 𝑃vac
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A fake axion tone of unknown frequency stands out against the 

squeezed noise
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no faxion: 
𝜇vac = 0, 𝜎 = 1

faxion, critically coupled unsqueezed:

𝜇noSQ = 4.2 ± 0.1, 𝜎 = 1

faxion, overcoupled, squeezed:

𝜇SQ = 6.0 ± 0.1, 𝜎 = 1

scan rate enhancement: 

𝜇SQ
𝜇noSQ

2

= 2.12 ± 0.08

arxiv:1809.06470



Impact of a doubled search rate
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~20,000 yrs at quantum limit,
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haloscope scan rate: 𝑅 ∝ 𝐵2

10 yrs at quantum limit 

with 200 x 30 Tesla magnet

~ $1.6 billion 

quantum squeezing today 

save $800 million! 



Acquisition: deploying our SSR with HAYSTAC’s tunable cavity, 

9 T magnetic field
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operation of squeezed state receiver (setup, tune, bias, calibration)

challenges: 

two JPAs near 9 T magnetic field

automated JPA tuning with cavity



Transfer the squeezed state receiver to Yale

Colorado Yale (old fridge) Yale (new fridge)

26



Operating the SSR receiver in HAYSTAC phase II
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acquisition

install, calibrate, and operate SSR 

processing

near-real-time

analysis

use Bayesian power measured for phase II data

Yale, August 2018. SSR commissioning 



quantum noise in axion search can be overcome

demonstrated: 2.1-fold speed up with squeezing

squeezed state received installed in Haystac phase II
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