A quantum-enhanced search for a weak microwave signal with application to axion detection 1

JILA NIST NIST

Maxime Malnou Daniel Palken **Konrad Lehnert**

Gene Hilton Leila Vale

UC Berkeley

Maria Simanovskaia Samantha Lewis Karl van Bibber

Yale

Benjamin Brubaker Ling Zhong Kelly Backes Reina Muruyama Steve Lamoreaux

HEISING - SIMONS FOUNDATION

Haystac

The standard model of cosmology - ΛCDM

What is dark matter? several ideas to test

Modern cosmology: our profound ignorance with three digits of precision

Hypothetical fundamental particles may for dark matter

consequence of supersymmetry

```
no evidence yet at Large Hadron Collider
```
no evidence from electron dipole moment searches

no widely accepted direct observation

growing experimental effort in other hypotheses

Hypothetical QCD axion: a light particle that is cold and dense enough to contribute to dark matter ion: a light particle that is cold and

tribute to dark matter

png-CP problem (Peccei and Quinn)

is dark matter candidate
 $m_a c^2 < 2000 \text{ }\mu\text{eV}$
 $m_a c^2/h < 500 \text{ GHz}$

THA ion: a light particle that is cold
tribute to dark matter
png-CP problem (Peccei and Quinn)
) is dark matter candidate
 $m_{a}c^{2} < 2000 \text{ }\mu\text{V}$
 $m_{a}c^{2}/h < 500 \text{ GHz}$

mechanism to resolve strong-CP problem (Peccei and Quinn)

associated particle (axion) is dark matter candidate

mass range

$$
m_{a}c^{2} < 2000 \, \mu\text{eV}
$$

as a frequency

 2 / h $<$ 500 GHz

modified QCD Lagrangian
$$
\Rightarrow g_{A\gamma\gamma}A(\vec{E}\cdot\vec{B})
$$

linearize coupling around static \vec{B} -field

E^A E A

dark matter axions create microwave photons

Scan narrowband cavity to search for resonant axion to photon conversion: haloscope (Sikivie 1983)

tune -> wait and integrate -> tune

axion line narrower than cavity

$$
\frac{f_A}{\Delta f_A} \approx 10^6 \qquad \frac{f_{\text{cav}}}{\Delta f_{\text{cav}}} \approx 10^4
$$

8

History of haloscopes searching for axioninc dark matter $\frac{9}{9}$

HAYSTAC: **H**aloscope **A**t **Y**ale **S**ensitive **T**o **A**xion **C**DM ¹⁰

1 – 10 GHz at DFSZ ~20,000 yrs at quantum limit, with one 9 Tesla magnet

 $f^{-14/3}$ scaling: B.M. Brubaker, Ph.D. thesis (2017) operation: S. Al Kenany*, …,* D.A. Palken *et al*., *Nucl. Instr. Meth. Phys. Res. A.* **854**, 11 (2017) exclusion: L. Zhong*, …,* D.A. Palken *et al*., *Phys. Rev. D*, **97**, 092001 (2018)

quantum amplification and squeezing

JPAs: quantum-limited, tunable amplifiers

Transmission losses limit squeezing ¹⁴

Scan rate enhancement, perfect efficiency 16

slight reduction in sensitivity much larger bandwidth

Effect of losses on the scan rate

loss 1.63 dB: $G_s = 6$, $\kappa_m = 9\kappa_l$

simulated axion search

A mock-haloscope to experimentally test the SSR concept 19

Squeezing reduces the noise without degrading the signal 20

Squeezing favorably trades off peak sensitivity for bandwidth ²¹

primary limitation: 1.61 dB transmission loss

Search for a fake axion of unknown frequency 22

A fake axion tone of unknown frequency stands out against the squeezed noise

no faxion:

$$
\mu_{\rm vac}=0,\,\,\sigma=1
$$

faxion, critically coupled unsqueezed: $\mu_{\text{noSO}} = 4.2 \pm 0.1, \sigma = 1$

faxion, overcoupled, squeezed: $\mu_{SO} = 6.0 \pm 0.1, \sigma = 1$

scan rate enhancement:

$$
\left(\frac{\mu_{\text{SQ}}}{\mu_{\text{noSQ}}}\right)^2 = 2.12 \pm 0.08
$$

arxiv:1809.06470

Impact of a doubled search rate 24

haloscope scan rate: $R \propto B^2$

1 – 10 GHz at DFSZ ~20,000 yrs at quantum limit, with one 9 Tesla magnet

10 yrs at quantum limit with 200 x 30 Tesla magnet $~51.6$ billion

quantum squeezing today save \$800 million!

operation of squeezed state receiver (setup, tune, bias, calibration)

challenges:

two JPAs near 9 T magnetic field automated JPA tuning with cavity

25

Transfer the squeezed state receiver to Yale

Operating the SSR receiver in HAYSTAC phase II \sim

acquisition

install, calibrate, and operate SSR

processing

near-real-time

Yale, August 2018. SSR commissioning

analysis

use Bayesian power measured for phase II data

Conclusions and acknowledgements $\frac{28}{28}$

quantum noise in axion search can be overcome

demonstrated: 2.1-fold speed up with squeezing

squeezed state received installed in Haystac phase II

JILA JPAs and axions

Maxime Malnou Dan Palken Manuel Castellanos-Beltran Francois Mallet

Mehmet Anil Will Kindel Hsiang-Shen Ku

