

Optical clocks for testing fundamental physics

Dr Rachel Godun

Oxford – Quantum Sensors for Fundamental Physics 17th October 2018

Outline

- Optical clock performance
- Two fundamental physics experiments with NPL clocks
 - 1. Search for variation of fundamental constants
 - 2. Test of Special Relativity

Optical clock basics

Improvements in optical clocks

Optical clocks at NPL

Sr lattice optical clock

Sr+ ion optical clock

Yb+ ion optical clock

■ All 3 clocks have frequency uncertainties in the 10⁻¹⁷ – 10⁻¹⁸ range

Outline

- Optical clock performance
- Two fundamental physics experiments with NPL clocks
 - 1. Search for variation of fundamental constants
 - 2. Test of Special Relativity

Atomic clocks to investigate $\Delta \alpha$

- If α varies, so will the atomic frequency f
- Beware that other quantities may also be varying
- For α variation, use optical ratio $f_1^{\text{opt}} / f_2^{\text{opt}} = r$

$$\frac{r}{r} = [A_1 - A_2] \frac{\alpha}{\alpha}$$
sensitivity factors

Measure fractional rate of change in frequency ratio

Deduce fractional rate of change in fine structure constant

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \qquad \mu = \frac{m_p}{m_e}$$

$$\mu = \frac{m_p}{m_e}$$

Dimensionless constants

NIST - Hg+/ Al+ optical frequency ratio

Most accurate single test of alpha-only variation

Clock transition	A
${}^{2}S_{1/2} - {}^{2}D_{5/2}$	-2.94
$^{1}S_{0} - {}^{3}P_{0}$	0.008
² S _{1/2} - ² F _{7/2}	-5.95
${}^{2}S_{1/2} - {}^{2}D_{3/2}$	1.00
${}^{2}S_{1/2} - {}^{2}D_{5/2}$	0.43
${}^{2}S_{1/2} - {}^{2}D_{5/2}$	0.15
$^{1}S_{0} - {}^{3}P_{0}$	0.06
	${}^{2}S_{1/2} - {}^{2}D_{5/2}$ ${}^{1}S_{0} - {}^{3}P_{0}$ ${}^{2}S_{1/2} - {}^{2}F_{7/2}$ ${}^{2}S_{1/2} - {}^{2}D_{3/2}$ ${}^{2}S_{1/2} - {}^{2}D_{5/2}$ ${}^{2}S_{1/2} - {}^{2}D_{5/2}$

V.V. Flambaum and V.A. Dzuba, Can. J. Phys. 87, 25 (2009)

$$\frac{\dot{r}}{r} = [A_1 - A_2] \frac{\dot{\alpha}}{\alpha}$$

$$\frac{\dot{r}}{r} = 2.95 \frac{\dot{\alpha}}{\alpha}$$

The advantage of Yb+ for laboratory tests

- Increased sensitivity to α variation
- Two clock transitions in the same ion in same environment

	Clock transition	A
Hg+	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	-2.94
Al+	1S _ 3P	0.008
Yb+(E3)	$^{2}S_{1/2} - ^{2}F_{7/2}$	-5.95
Yb+(E2)	${}^{2}S_{1/2} - {}^{2}D_{3/2}$	1.00
Sr ⁺	[∠] S _{1/2} − [∠] D _{5/2}	0.43
Ca+	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	0.15
Sr	${}^{1}S_{0} - {}^{3}P_{0}$	0.06
V/V/ EL	and MA Deviler Orac I Dhara	07 05 (0000)

V.V. Flambaum and V.A. Dzuba, Can. J. Phys. **87**, 25 (2009)

$$\frac{\dot{r}}{r} = [A_1 - A_2] \frac{\dot{\alpha}}{\alpha}$$

$$\frac{\dot{r}}{r} = 6.95 \frac{\dot{\alpha}}{\alpha}$$

Frequency ratios between Yb⁺ and Cs

Can also investigate variation in µ as well

$$\frac{r}{r} = [A_1 - A_2] \frac{\alpha}{\alpha} - [B_1 - B_2] \frac{\mu}{\mu}$$

Ion	Clock transition	Α	В
Yb+	${}^{2}S_{1/2} - {}^{2}D_{3/2}$	1.00	0
Yb+	${}^{2}S_{1/2} - {}^{2}F_{7/2}$	-5.95	0
Cs	$^{2}S_{1/2}$ F=3-4	2.83	1

$$\alpha \mu$$

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \quad \mu = \frac{m_p}{m_e}$$

$$\mu = \frac{m_p}{m_e}$$

History of Yb+ E3 and E2 against Cs

$$\frac{d}{dt} \ln \left(\frac{\nu_{\rm E2}}{\nu_{\rm Cs}} \right) = (2.3 \pm 1.5) \times 10^{-16} \,\rm yr^{-1}$$

Date

$$\frac{d}{dt} \ln \left(\frac{\nu_{\rm E3}}{\nu_{\rm Cs}} \right) = (-2.5 \pm 2.7) \times 10^{-16} \,\rm year^{-1}$$

Yb⁺ limits on α and μ time-variation

$$[\dot{\alpha}/\alpha]_{\mathrm{Yb^{+}/Cs}} = 7.2(4.7) \times 10^{-17} \mathrm{\ yr^{-1}}$$

$$[\dot{\mu}/\mu]_{\rm Yb^+/Cs} = 3.5(2.4) \times 10^{-16} \text{ yr}^{-1}$$

Combined limits on α and μ variation

$$\dot{\mu}/\mu = 0.2(1.1) \times 10^{-16} \,\text{year}^{-1}$$

 $\dot{\alpha}/\alpha = -0.7(2.1) \times 10^{-17} \,\text{year}^{-1}$

 Three-fold improvement on best previous constraint on μ

- Improvements to the clock will allow even more stringent searches for present-day changes
 - Slow variations
 - Transients
 - Oscillations

Outline

- Optical clock performance
- Three fundamental physics experiments with NPL clocks
 - 1. Search for variation of fundamental constants
 - 2. Test of Special Relativity

Test of Special Relativity

- Lorentz Invariance is an assumption of Special Relativity: the outcome of an experiment does not depend on the velocity or orientation of the inertial frame in which it is performed
- If true, atomic clocks in different inertial frames will have the same frequency
- Compare clocks in different locations and look for daily variations in their frequency differences

European network of optical clocks

 Comparison of Sr optical lattice clocks, linked via optical fibres

Test of Special Relativity

- Need to account for gravitational redshifts due to tides
- Analysis of clock frequency differences shows that

violation of Lorentz Invariance Robertson-Mansouri-Sexl parameter < 1.1 ×10⁻⁸

 Factor of 2 improvement on best previous constraint

Summary

■ NPL Sr, Sr⁺ and Yb⁺ optical clocks have frequency uncertainties in the 10⁻¹⁷ – 10⁻¹⁸ range

- Can use optical clocks to test fundamental physics at unprecedented levels
 - Variations in α and μ
 - Lorentz Invariance tests

With thanks to...

Time and Frequency group at NPL

European collaborators

Systèmes de Référence Temps-Espace

