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What automatic differentiation is
● Technique for evaluating the derivatives of mathematical functions

● Applicable to computer programs (e.g. C++ code)

● Alternative to numerical differentiation
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Numerical differentiation

Finite difference method:

(for small value of h)
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Numerical differentiation

Disadvantages:

● Need to evaluate f twice
● Slow gradient computation
● Prone to numerical errors
● How to select h?

[Wikipedia, Numerical differentiation]
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Automatic differentiation
What automatic 
differentiation is

[Baydin et al., Automatic Differentiation                  
in Machine Learning: a Survey, 2018]

● Applies basic rules of symbolic 
differentiation

● To the source code of the original 
function

● The result is the code of the 
function that computes value of the 
derivative

● Without additional precision loss

● Without inefficiently long 
expressions
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Alternative to symbolic differentiation

[Wikipedia, Automatic differentiation]
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● Not limited to closed-form expressions

● Can take derivatives of algorithms (conditionals, loops, recursion)
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Automatic differentiation
● Forward mode AD algorithm allows to compute derivatives w.r.t. any (single) 

variable
● Theoretical result guarantees that the derivative can be computed in at most 

2.5 times more arithmetic operations than the original function
● Propagates derivatives from the dependent towards the independent 

variables
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[Wikipedia, Automatic differentiation]
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Computing gradients
● What if we want to compute a gradient (vector of derivatives w.r.t. every 

variable)? 
● For a function of N inputs, we have to call N functions produced by the 

forward mode
● Total complexity is O(2.5*N*M), where M is the complexity of the original 

function
● Reverse mode allows to compute gradients with complexity of O(4*M), 

independently of N, which is much more efficient for functions with many 
parameters
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Automatic differentiation
● Reverse mode AD allows to compute gradients 
● Gradients can be computed in at most 4 times more arithmetic operations 

than the original function (independently of the number of input variables)
● Propagates derivatives from the independent variables towards the result of 

the function
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[Wikipedia, Automatic differentiation]
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AD implementations
● Source transformation

● Operator overloading

● Several implementations exist, see: http://www.autodiff.org/?module=Tools
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Automatic differentiation in Clad
● Clad is a Clang compiler plugin
● Performs C++ source code transformation, based on Clang AST
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double f(double x) {

return x * x;

}

FunctionDecl f 'double (double)'

|-ParmVarDecl x 'double'

`-CompoundStmt

  `-ReturnStmt

    `-BinaryOperator 'double' '*'

      |-ImplicitCastExpr 'double' <LValueToRValue>

      | `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

      `-ImplicitCastExpr 'double' <LValueToRValue>

        `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

AST
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Automatic differentiation in Clad
● Given some C++ function f
● (no source modification needed, but must be visible for the compiler) 
● User specifies the function, independent variables, differentiation mode
● Clad performs the transformation (in compile time)
● Another C++ function for f’ is produced
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Automatic differentiation in Clad

double f(double x) { return x*x; }

double f_darg0(double x) { return 1*x + x*1; }

std::cout << f_darg0(1) << ‘\n’;
// Prints 2

...
clad::differentiate(f, 0);
...

User marks f for differentiation

Clad generates a new function

Derivative is ready to be used in 
the same program as a ‘normal’ 
function
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Clad capabilities

double f(double x, double y) {

    double t = x*x;

    return t + y;

}

double f_darg0(double x, double y) {

    double dt = 1*x + x*1;

    return dt + 0;

}

● Most C++ construct are (will be) supported
● As long as the function is differentiable

Example: temporary variable declarations
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Clad capabilities

double pow(double x, int n) {

    double r = 1;

    for (int i = 0; i < n; i++)

        r = r*x;

    return r;

}

double pow_darg0(double x, int n) {

    double dr = 0;

    double r = 1;

    for (int i = 0; i < n; i++) {

    dr = dr*x + r*1;

         r = r*x;

    }

    return dr;

}

Example: loops
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Contributions
● Implemented Reverse mode AD for efficient gradients computation

● Extended the functionality to support control flow and variable reassignments

● Integrated Clad into ROOT (CERN’s framework for data analysis), available 

through TFormula, to be used in minimization and fitting
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Potential applications
Any gradient-based optimization methods, for example:

● Function minimization
● Backpropagation for machine learning
● Fitting models to data

In ROOT:

● Minuit
● TMVA
● RooFit
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Future work

● Support more C++ constructs, enable differentiation of any C++ code in 
general

● Improve user interface to allow more expressiveness for independent 
variables, differentiation mode specification

● Support OpenCL/CUDA code differentiation

● Implement advanced features of forward/reverse mode AD to produce optimal 
code

● Efficient differentiation of functions with multiple outputs (Jacobians), 
Hessians
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Thank you!
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