
Aleksandr Efremov DIANA Meeting, 08.10.2018

Clad - Clang plugin for
Automatic Differentiation

Aleksandr Efremov
Mentors: Vassil Vassilev, Oksana Shadura

1

Aleksandr Efremov DIANA Meeting, 08.10.2018

What automatic differentiation is
● Technique for evaluating the derivatives of mathematical functions

● Applicable to computer programs (e.g. C++ code)

● Alternative to numerical differentiation

2

Aleksandr Efremov DIANA Meeting, 08.10.2018

Numerical differentiation

Finite difference method:

(for small value of h)

3

Aleksandr Efremov DIANA Meeting, 08.10.2018

Numerical differentiation

Disadvantages:

● Need to evaluate f twice
● Slow gradient computation
● Prone to numerical errors
● How to select h?

[Wikipedia, Numerical differentiation]

4

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation
What automatic
differentiation is

[Baydin et al., Automatic Differentiation
in Machine Learning: a Survey, 2018]

● Applies basic rules of symbolic
differentiation

● To the source code of the original
function

● The result is the code of the
function that computes value of the
derivative

● Without additional precision loss

● Without inefficiently long
expressions

5

Aleksandr Efremov DIANA Meeting, 08.10.2018

Alternative to symbolic differentiation

[Wikipedia, Automatic differentiation]

6

● Not limited to closed-form expressions

● Can take derivatives of algorithms (conditionals, loops, recursion)

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation
● Forward mode AD algorithm allows to compute derivatives w.r.t. any (single)

variable
● Theoretical result guarantees that the derivative can be computed in at most

2.5 times more arithmetic operations than the original function
● Propagates derivatives from the dependent towards the independent

variables

7

[Wikipedia, Automatic differentiation]

Aleksandr Efremov DIANA Meeting, 08.10.2018

Computing gradients
● What if we want to compute a gradient (vector of derivatives w.r.t. every

variable)?
● For a function of N inputs, we have to call N functions produced by the

forward mode
● Total complexity is O(2.5*N*M), where M is the complexity of the original

function
● Reverse mode allows to compute gradients with complexity of O(4*M),

independently of N, which is much more efficient for functions with many
parameters

8

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation
● Reverse mode AD allows to compute gradients
● Gradients can be computed in at most 4 times more arithmetic operations

than the original function (independently of the number of input variables)
● Propagates derivatives from the independent variables towards the result of

the function

9

[Wikipedia, Automatic differentiation]

Aleksandr Efremov DIANA Meeting, 08.10.2018

AD implementations
● Source transformation

● Operator overloading

● Several implementations exist, see: http://www.autodiff.org/?module=Tools

10

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation in Clad
● Clad is a Clang compiler plugin
● Performs C++ source code transformation, based on Clang AST

11

double f(double x) {

return x * x;

}

FunctionDecl f 'double (double)'

|-ParmVarDecl x 'double'

`-CompoundStmt

 `-ReturnStmt

 `-BinaryOperator 'double' '*'

 |-ImplicitCastExpr 'double' <LValueToRValue>

 | `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

 `-ImplicitCastExpr 'double' <LValueToRValue>

 `-DeclRefExpr 'double' lvalue ParmVar 'x' 'double'

AST

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation in Clad
● Given some C++ function f
● (no source modification needed, but must be visible for the compiler)
● User specifies the function, independent variables, differentiation mode
● Clad performs the transformation (in compile time)
● Another C++ function for f’ is produced

12

Aleksandr Efremov DIANA Meeting, 08.10.2018

Automatic differentiation in Clad

double f(double x) { return x*x; }

double f_darg0(double x) { return 1*x + x*1; }

std::cout << f_darg0(1) << ‘\n’;
// Prints 2

...
clad::differentiate(f, 0);
...

User marks f for differentiation

Clad generates a new function

Derivative is ready to be used in
the same program as a ‘normal’
function

13

Aleksandr Efremov DIANA Meeting, 08.10.2018

Clad capabilities

double f(double x, double y) {

 double t = x*x;

 return t + y;

}

double f_darg0(double x, double y) {

 double dt = 1*x + x*1;

 return dt + 0;

}

● Most C++ construct are (will be) supported
● As long as the function is differentiable

Example: temporary variable declarations

14

Aleksandr Efremov DIANA Meeting, 08.10.2018

Clad capabilities

double pow(double x, int n) {

 double r = 1;

 for (int i = 0; i < n; i++)

 r = r*x;

 return r;

}

double pow_darg0(double x, int n) {

 double dr = 0;

 double r = 1;

 for (int i = 0; i < n; i++) {

 dr = dr*x + r*1;

 r = r*x;

 }

 return dr;

}

Example: loops

15

Aleksandr Efremov DIANA Meeting, 08.10.2018

Contributions
● Implemented Reverse mode AD for efficient gradients computation

● Extended the functionality to support control flow and variable reassignments

● Integrated Clad into ROOT (CERN’s framework for data analysis), available

through TFormula, to be used in minimization and fitting

16

Aleksandr Efremov DIANA Meeting, 08.10.2018

Potential applications
Any gradient-based optimization methods, for example:

● Function minimization
● Backpropagation for machine learning
● Fitting models to data

In ROOT:

● Minuit
● TMVA
● RooFit

17

Aleksandr Efremov DIANA Meeting, 08.10.2018

Future work

● Support more C++ constructs, enable differentiation of any C++ code in
general

● Improve user interface to allow more expressiveness for independent
variables, differentiation mode specification

● Support OpenCL/CUDA code differentiation

● Implement advanced features of forward/reverse mode AD to produce optimal
code

● Efficient differentiation of functions with multiple outputs (Jacobians),
Hessians

18

Aleksandr Efremov DIANA Meeting, 08.10.2018

Thank you!

19

