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MW at hadron colliders

W boson mass (MW) measured from the distribution of transverse variables

‣ transverse lepton momentum (pT)

‣ missing transverse energy (ETmiss)

‣ transverse mass (mT)
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MW at hadron colliders

In pp collisions, W bosons are NOT produced purely longitudinal

‣ transverse variables are NOT invariant under generic boosts, hence 
σ-1dσ/dxT depends on the model of W boson production & decay
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mT : pT : Emiss
T = 0.53 : 0.31 : 0.16

• At the LHC, this is offset by worse resolution of recoil (hT) due to larger PU
‣ ATLAS at 7 TeV (<μ>=9) combines two measurements with weights: 

mT : pT = 0.14 : 0.86

CDF, PRL 108 (2012) 151803

ATLAS, EPJC 78 (2018) 110 

m2
T = 2(pT |pT + hT | + p2

T + pT ⋅ hT)(*)

• mT(*) more robust with respect to transverse W motion

‣ CDF combines three measurements with weights:

Choice of sensitive variable
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mT : pT = 0.14 : 0.86 ATLAS, EPJC 78 (2018) 110 

In the following,
focus on pT-based measurement

mT : pT : Emiss
T = 0.53 : 0.31 : 0.16 CDF, PRL 108 (2012) 151803

(*) m2
T = 2(pT |pT + hT | + p2

T + pT ⋅ hT)

Choice of sensitive variable

• At the LHC, this is offset by worse resolution of recoil (hT) due to larger PU
‣ ATLAS at 7 TeV (<μ>=9) combines two measurements with weights: 

• mT(*) more robust with respect to transverse W motion

‣ CDF combines three measurements with weights:



10-4: a demanding level of precision
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Bozzi et al., PRD 91 (2015) 113005

For ΔMW/MW = 10-4, precision on σ-1dσ/dpT must be at the level of 0.05%
‣ How does it translate into a precision on qT modelling?
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Impact of a qT-modelling

σ-1dσ/dqT is a continuous density, not a parameter. 

‣ How well do we need to know this p.d.f. as a function of qT ? 
- pT and qT are NOT independent variables
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Impact of a qT-modelling
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Compare impact on σ-1dσ/dpT induced by:

‣ ±10 MeV shift of MW 

‣ +1% change of Δσ

Peaks shifts towards left. 
More compatibile with 
ΔMW < 0

Peak at MW/2 and tail above
Slightly more compatibile 
with ΔMW < 0 

[0,2] GeV [4,6] GeV

+10 MeV

-10 MeV
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Multi-peak structure:  
similar compatibility 
with either sign

Peaks shifts towards right. 
Larger compatibility with 
ΔMW > 0

[12,14] GeV [18,20] GeV

Impact of a qT-modelling
Compare impact on σ-1dσ/dpT induced by:

‣ ±10 MeV shift of MW 

‣ +1% change of Δσ
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Peaks shifts towards even 
more right, but cross section 
small

Impact on ΔMW 
becomes negligible 

[30,35] GeV [45,50] GeV

Impact of a qT-modelling
Compare impact on σ-1dσ/dpT induced by:

‣ ±10 MeV shift of MW 

‣ +1% change of Δσ



Gauging the level of accuracy
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To make it more quantitative, let’s consider 
correlation between <qT> and MW

‣ δ<qT> ~ δMW:

Quackenbush et al., PRD 92 (2015) 033008



Gauging the level of accuracy
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To make it more quantitative, let’s consider 
correlation between <qT> and MW

‣ δ<qT> ~ δMW:

Quackenbush et al., PRD 92 (2015) 033008

δMW

MW
= ( 40 MeV

40 MeV ) < qT >
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< qT >

≈ 0.15
δ < qT >

< qT >



Gauging the level of accuracy
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Compute fractional variation of <qT> 
caused by 1% change of σ-1dσ/dqT

‣ E.g.: assume 1% uncertainty on the 
first [0,5] GeV bin

0.15 × 3 ⋅ 10−4 × 5 (GeV) × 1 ( % )

→
δMW

MW
= 2 × 10−4“Functional derivative”

To make it more quantitative, let’s consider 
correlation between <qT> and MW

‣ δ<qT> ~ δMW:

Quackenbush et al., PRD 92 (2015) 033008

δMW

MW
= ( 40 MeV

40 MeV ) < qT >
MW

δ < qT >
< qT >

≈ 0.15
δ < qT >

< qT >



Discussion
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1. For ΔMW/MW = 10-4, precision on σ-1dσ/dpT must be at the level of 0.05%

2. Barring fortuitous cancellations, this implies a control on σ-1dσ/dqT at the 
level of 1% or better over the first tens of GeV 

3. Care should be taken for parametric uncertainties on σ-1dσ/dqT fully 
correlated across qT

‣ A correlated up/down or down/up uncertainty crossing 0 around <qT> 
would give the largest bias

‣ Other modes of variation can give rise to some level of cancellation



A concrete example
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ATLAS MW measurement uses Pythia8 with AZ tune to model σ-1dσ/dqT 

‣ Consider tune variations along three eigenvectors of covariance matrix

- same size (~0.5%)
- the three variations are NOT akin to a MW shift  

ATL-PHYS-PUB-2014-015

-10 MeV

ΔMW (MeV)
Fixed-order PDF 8.7

AZ tune 3.0
mc 1.2
μF 5

PS PDF 1

This can explain why tune 
uncertainties on dσ/dqT are 
sub-leading

ATLAS, EPJC 78 (2018) 110 
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ATLAS, EPJC 78 (2018) 110 μF variations with heavy flavour-decorrelation 
are the leading source of qT model uncertainty

‣ Uncorrelated variations behave similarly:

- maximal at qT~0 (1%)

- vanish at qT ~ 8 GeV, then flip sign

‣ Variation not in perfect phase 
with "functional derivative” 
- Some cancellation possible

‣ Similar shapes perhaps an 
indication of robustness
- bb➞Z hints at a slightly 

different form, but small in 
size

- Should one consider other 
modes of variation within the 
envelope ?

ΔMW (MeV)
Fixed-order PDF 8.7

AZ tune 3.0
mc 1.2
μF 5

PS PDF 1

A concrete example



qVT measurements at LHC
Theory:

‣ σ-1dσV/dqT ~ 5%[1]

‣ dσW / dσZ  ~ 5%-10%[2], 0.5%-2.5%[3], 1-2%[2]  (depending on corr. scheme)

Experiment:

‣ σ-1dσZ/dqT ~  0.5-1%     with ~2 GeV bins

‣ σ-1dσW/dqT ~ 1.5-2.5%  with ~8 GeV bins

‣ dσW/ dσZ       ~ 2.5%        with ~8 GeV bins

[1] Bizon et al., JHEP 12 (2018) 132

[2] Rottoli, Isaacson, EW workshop, Durham

[3] ATLAS, EPJC 78 (2018) 110 
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ATLAS, EPJC 78 (2018) 110 

qVT measurements at LHC
Theory:

‣ σ-1dσV/dqT ~ 5%[1]

‣ dσW / dσZ  ~ 5%-10%[2], 0.5%-2.5%[3], 1-2%[2]

Experiment:

‣ σ-1dσZ/dqT ~  0.5-1%     with ~2 GeV bins

‣ σ-1dσW/dqT ~ 1.5-2.5%  with ~8 GeV bins

‣ dσW/ dσZ      ~ 2.5%         with ~8 GeV bins



qTZ at 7 & 8 TeV
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ATLAS: d2σ/dqTdy, 4.7\fb (ee+μμ)  
CMS:    dσ/dqT, 36\pb, (ee+μμ)

‣ Δσ/σ ~ 0.5%; precision limited 
by systematic uncertainty 

ATLAS, JHEP 09 (2014) 145

- Lepton efficiency & scale
- Unfolding
- FSR modeling

ATLAS: d3σ/dqTdydm, 20.3\fb (ee+μμ),   
CMS:    d2σ/dqTdy, 19.7\fb (μμ)

‣ Measurement extended at different 
Q2 and higher qT’s

ATLAS, EPJC 76 (2016) 291



Tuning on qTZ 
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ATLAS, JHEP 09 (2014) 145

Failure of existing PS to model low-qT region observed in 7 TeV data

‣ ATLAS: AZ (Pythia8) and AZNLO (powheg+Pythia8) tunes on pTZ @ 7 TeV

‣ CMS: Z2 tune based on underlying event, which also describes well pTZ

PRD 85 (2012) 032002



qTW at 7 & 8 TeV
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ATLAS: dσ/dqT 31/pb @ 7 TeV, e+μ  

CMS: dσ/dqT 18.4/pb @ 8 TeV, e+μ (<μ>~4.5) 

‣ Δσ/σ = 1.3-2.5% & coarser granularity 

- Limited by hT resolution (unfolding)

ATLAS, PRD 85 (2012) 012005

qTW inferred 
from hadronic 
recoil



qWT / qZT at 7 & 8 TeV
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Both ATLAS and CMS measure qWT/qZT ratio @ 7 and 8 TeV

‣ Precision in lowest bin: 2.5%
- ATLAS: dominated by hT modelling in W measurement
- CMS: dominated by statistical uncertainty in qZT

CMS, JHEP 02 (2017) 096
ATLAS, EPJC 78 (2018) 110 



The low-PU runs at 13 TeV
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In Nov. 2017, special low-PU runs of a few days

‣ ~200 pb-1 at 13 TeV, <μ>=2-3 (levelled) 
taken by both experiments

- additional ~200\fb in 2018 (ATLAS)
- additional data @ 5 TeV

Expected improvement compared 
to published results:

‣ ATLAS:  <μ>: [0,5] ➞ 2  
and new PF-algorithm

‣ CMS: <μ>: 4.5 ➞ 3 & PUPPI

‣ More data (larger Z sample)

- RMS(hT): 13 ➞ 5 GeV

- Δσ/σ: 2.5% ➞ 1% in 
[0,5] GeV

ATL-PHYS-PUB-2017-021



Conclusions
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• Measurements of W boson mass at LHC are currently limited by modelling 
uncertainty on both longitudinal and transverse d.o.f.

• Harsher PU environment of LHC favours use of pT-based fits

‣ Enhancing sensitivity to modelling of σ-1dσ/dqT

• Δσ/σ~1% is the level of affordable uncertainty

‣ how this budget is distributed across the qT spectrum matters!
‣ ATLAS measurement taken as a test case  

• Theory predictions approaching the 1%-2% uncertainty on dσZ/dσW

‣ Disagreement between resummed and the tuned Pythia8 prediction is 
still an open question

‣ An experimental precision of 1% in the bin [0,5] GeV seems at hand 
with new low-PU runs at 13 TeV



Thank you!
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Back up
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Tevatron vs LHC

 27 Andari’s talk 17/10/2018

After detector 
smearing:
 mT ~ pT
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pℓ
T ← [Q2, qT, y, cos θ*, ϕ*]

TRANSVERSE
d.o.f.

LONGITUDINAL 
& 

POLARIZATION
d.o.f.

Neglecting QED radiation, σ-1 dσ/dpT is determined by 5 latent variables

‣ MW enters solely as a parameter of dσ/dQ2  

‣ The other are nuisance variables, governing the W boost and decay

Modeling d.o.f.



10-4: a demanding level of precision

 29

Bozzi et al., PRD 91 (2015) 113005 Bagnaschi et al., JHEP 07 (2018) 101

For ΔMW/MW = 10-4, precision on σ-1dσ/dpT must be at the level of 0.05%
‣ For ideal detectors, mT this would be less demanding by factor of ~10



W virtuality

 30

Under control
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Shift of W peak due to PDF

LB, Bertacchi, Manca, Rolandi, work in progress

Q2 pdf comes from the convolution of the W propagator with parton luminosity 

‣ Non-uniform PDF makes it deviate from a Breit-Wigner
‣ Main effect: peak at MW-O(10) MeV, but: NNPDF3.0 uncertainty on the 

shift smaller than 1 MeV
‣ EW corrections known at NLO and subleading compared to QED 

radiation



Longitudinal and polarisation d.o.f.

Longitudinal and polarisation d.o.f. ➞ collinear PDFs
‣ Origin of a PDF uncertainty is the incomplete |η| acceptance (*)

- σ-1dσ/dpT within acceptance depends on valence/sea PDF ratio 

 31(*) Stirling, Martin, PLB 237 (1990) 551

|η| ∈ [0.0, 0.4] [1.2, 1.6] [2.0, 2.4]
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Bozzi et al., PRD 91 (2015) 113005

With full |η| acceptance, 
PDF uncertainty would 
cancel in the limit qT ➞ 0

Longitudinal and polarisation d.o.f.



Longitudinal and polarisation d.o.f.
In the phase-space relevant for MW 
measurement, longitudinal and polarisation 
d.o.f. mostly determined by collinear PDFs
‣ If qT = 0, sensitivity to PDF uncertainty 

arises from incomplete |η| acceptance(*)

- enhanced by V-A current
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W production

(*) Stirling, Martin, PLB 237 (1990) 551

Bozzi et al., PRD 91 (2015) 113005

 ΔMW = 20 MeV

3 MeV

ATL-PHYS-PUB-2014-015

PDF uncertainty ➞ 0

‣ ➞
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- increases <pT2> - <pT>2  ⇒ reduces MW resolution

- increases <pT>                ⇒ bias MW estimator
A finite qT :

[4,8] GeV [8,12] GeV

⎨

qT ∈ [0,2] GeV

Transverse d.o.f.
qT  ➞ multiple soft/collinear initial radiation, gluon-initiated diagrams, 
photon radiation, intrinsic partonic kT

‣ uncertainty on σ-1dσ/dqT does not cancel in full phase-space (as for PDFs)
‣ Ideally, qT-independence if qT could be measured

- Remember: hT<30 GeV cut in part of ATLAS optimisation 
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Δσ(qL
T, qH

T ) = ∫
qH

T

qL
T

dqT
1
σ

dσ
dqT

→
∂ M̂W

∂ Δσ
= ?

< qT > ≈ 15 GeV

qmax
T ≈ 5 GeV

q90%
T ≈ 40 GeV

Impact of a qT-mismodeling

d2σ
dq2

T
→ const.

Let’s study how a mis-model of σ-1dσ/dqT can bias MW

‣ N.B.: σ-1dσ/dqT is a function, not a parameter.
- How well do we need to know it as a function of qT ? 
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PDF variation in PS evolution provide comparable uncertainties 

‣ 1-2% at qT ~ 0,  flipping sign at ~ 15 GeV => potentially different from μF

- But: their impact small due to W+/W- anti-correlation

ATLAS, EPJC 78 (2018) 110 

ΔMW (MeV)
Fixed-order PDF 8.7

AZ tune 3.0
mc 1.2
μF 5

PS PDF 1

A concrete example



Flavour-dependence
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PERTURBATIVE
Owing to different quark masses, qT 
spectra are flavour dependent

‣ correlation/decorrelation schemes 
between flavours in an O(1) effect 
on the scale of precision MW 

ATLAS, EPJC 78 (2018) 110 Bacchetta et al., PLB 788 (2019) 542

NON-PERTURBATIVE
Relaxing flavour-universal intrinsic kT, 
but constraining to Z qT

‣ Shifts as large as 9 MeV level 
indicate non-negligible effects 
on the scale of precision MW



Theory developments 

 38

State-of-the-art in resummation of large logarithms is N3LL+NNLO (e.g. RadISH)

‣ Claimed relative accuracy on qT spectrum ~ 3-5% 
‣ Can do better with qWT/qZT with partial/full decorrelation

Rottoli’s talk, EW workshop, Durham

Fully uncorrelated:
5-10% uncertainty 

Fully correlated:
1-2% uncertainty 

Isaacson’s talk, EW workshop, Durham



qTZ at 8 TeV
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ATLAS: d3σ/dqTdydm, 20.3\fb (ee+μμ),   
CMS: d2σ/dqTdy, 19.7\fb (μμ)

‣ Sub-percent precision

‣ measurement extended at different 
Q2 and higher qT’s

ATLAS, EPJC 76 (2016) 291

Not all Q2 ranges equally 
well described by a unique 
tuned MC
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ATLAS, EPJC 76 (2016) 291

Test of NLO EW 
corrections on 
top of NNLO 
calculations

qTZ at 8 TeV
ATLAS: d3σ/dqTdydm, 20.3\fb, ee+μμ   

CMS: d2σ/dqTdy, 19.7\fb, ee+μμ
‣ precision at low qT at few permill
- Different virtualises Q2 
- High pT regime 
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The 13 TeV run at a glance
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 ~ 80 fb-1

‣ Some results available

 ~ 130 fb-1

‣ Results with full statistics not 
yet released

 ~ 35 fb-1 (+4 fb-1, 2015)

‣ Lots of new results:
- improved searches and 

measurements
- new observations
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Z and W physics: overview

• Z 
‣ Precision QCD

- Inclusive and multi-differential cross 
sections

- Angular coefficients
‣ Precision EWK

- Mixing angle, tau polarisation

• W
‣  Precision QCD

- Inclusive and differential cross sections
- Charge asymmetry, W+HF

‣ Precision EWK
- W mass

• VV,  VVV, qqVV
‣ Constraints on aTGC and aQGC

JHEP 12 (2017) 059

EPJC 78 (2018) 110 
ATLAS-CONF-2018-037 
EPJC 78 (2018) 163

JHEP 02 (2017) 096 
JHEP 05 (2014) 068 
EPJC 76 (2016) 469 

EPJC 78 (2018) 110

PRL 120 (2018) 081801 
ATLAS-CONF-2018-030 
CMS-PAS-SMP-18-001 
ATLAS-CONF-2018-033 
….

N.B.:  Not a complete list
        Most are Run 1 results

(40 Hz / ll) (400 Hz / l)

JHEP 08 (2016) 159
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Measurement is 
dominated by 
systematics w/ 7 TeV 
only

MW

ATLAS measurement alone 
competes with Tevatron 
combination


