

Theory Predictions for Rare *B* decays

Javier Virto

Massachusetts Institute of Technology and Technische Universität München

SM@LHC 2019, Zurich, April 23rd 2019

Marie Skłodowska-Curie Actions

- Rare decays are those suppressed in the SM by e.g. loop, GIM, helicity, etc. They are very sensitive to BSM contributions.
- ▶ Rare decays have typically $\mathcal{B} < 10^{-6}$. Examples:

 $\begin{array}{ll} \mathcal{B}(K \to \pi \nu \bar{\nu}) \sim 10^{-11} & \mathcal{B}(K_S \to \mu^+ \mu^-) \sim 10^{-12} & \mathcal{B}(K \to \pi \ell \ell) \sim 10^{-7} \\ \mathcal{B}(D \to \rho \ell \ell) \sim 10^{-9} & \mathcal{B}(B \to K^* \ell \ell) \sim 10^{-6} & \mathcal{B}(B_s \to \mu^+ \mu^-) \sim 10^{-9} \end{array}$

- ▶ Nevertheless, some rare decays are no longer 'rare' at the LHC! E.g. $N(B \rightarrow K^* \mu \mu)_{\text{Run 1}} = 2398 \pm 57$
- Thus we require now theory predictions with $\sigma_{th} \lesssim 10\%$.

Effective Field Theory

► At scales $\mu \leq m_b : \mathcal{L}_{(B)SM} \longrightarrow \mathcal{L}_{WET} = \mathcal{L}_{QED+QCD}^{e,\mu,\tau,u,d,s,c,b} + C_i(\mu) \mathcal{O}_i(\mu)$

 $\pi^ \Lambda_{QCD}$ ~ few x 100 MeV

 $\Lambda_{EW} \sim 100 \text{ GeV}$

▶ EFT is **convenient** but also **necessary**.

Thus predictions for hadron decay observables require **three** ingredients:

1. Construct the EFT (operators, matching conditions, Anomalous dimensions)

Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06 Aebischer, Crivellin, Fael, Greub '16, Aebischer, Fael, Greub, Virto '17, Jenkins, Manohar, Stoffer '17, ...

- 2. Calculate the decay amplitudes in the EFT, in terms of 'canonical' non-perturbative objects (matrix elements).
- 3. Deal with the non-peturbative matrix elements.

Different non-pertubative objects and tools are needed :

1. Inclusive semileptonic:	$B_q \to X \ell \nu$	HQE
2. Exclusive leptonic:	$B_q \to \ell \ell$	f_B
3. Inclusive rad./dileptonic:	$B_q \to X\gamma, X\ell\ell$	HQE + factorization
4. Exclusive semileptonic:	$B_q \to M \ell \nu$	$F^{B \to M}$
5. Exclusive rad./dileptonic:	$B_q \to V\gamma, M\ell\ell$	$F^{B \to M}$ + factorization
6. Exclusive non-leptonic:	$B_q \rightarrow M_1 M_2$	factorization + $F^{B \rightarrow M}$ + Φ_M
NIOBE®	$B_q \rightarrow M_1 M_2 M_3$	factorization + ???

Guidelines from the conveners: Instead of covering everything, focus on selected subtopics of high interest and discuss them in more depth.

CERN-LHCC-2017-003, LHCb EoI (LHCb ~ 2035) \Box Bottleneck is SM uncertainties: Assuming vanishing exp uncertainties Pull($P_5^{([2.5,4.0])}) = 3.5\sigma$ Pull($P_5^{([4.0,6.0])}) = 6.5\sigma$ Pull($P_5^{([6.0,8.0])}) = 5.4\sigma$

This talk will focus on Exclusive $b \rightarrow s$ transitions. Proxy for many others.

Plan for the talk

- 1. Anatomy of $B \to K^{(*)}\ell\ell$ EFT Amplitudes
- 2. Local Form Factors
 - Lattice vs LCSRs
 - Large-recoil relations
 - Finite-width effects
 - q^2 -dependence
- 3. Non-Local Form Factors
 - Factorization
 - z-parametrization
 - Tests 'a posteriori'
- 4. LCDAs (not covered today)
- 5. EM corrections (not covered today)

Anatomy of $B \rightarrow M_{\lambda} \ell^+ \ell^-$ EFT Amplitudes

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors) : $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local :
$$\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T \{ \mathcal{J}^{\mu}_{\mathrm{em}}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$$

Javier Virto

'Local' Form Factors

q^2 -dependence : $\mathcal{F}(q^2) \propto \sum_k \alpha_k z(q^2)^k$ "z-parametrization"

Bourrely, Caprini, Lellouch

"Optimized" observables : P_1, P_2, P'_5, \ldots (a full basis)

Mescia, Matias, Ramon, JV, 1202.4266 Descotes-Genon, Matias, Ramon, JV, 1207.2753 Descotes-Genon, Hurth, Matias, JV, 1303.5794

Finite width effects : $B \to K^*(\to K\pi)$ Accessible via LCSRs

Cheng, Khodjamirian, JV, 1701.01633 Cheng, Khodjamirian, JV, 1709.00173

Javier Virto

Theory Predictions for Rare B decays

$\mathcal{B}(B \rightarrow K^* \mu \mu)$ Forward-Backward Asymmetry Zero

Beneke, Feldmann, Seidel 2001

Partial cancellation of hadronic uncertainties in the zero-crossing

Javier Virto

Hadronic Form Factors at Large Recoil

Beneke, Feldmann 2000; Descotes-Genon, Hofer, Matias, JV 2014

$$\begin{split} V(q^2) &= \frac{m_B + m_{K^*}}{m_B} \, \xi_{\perp}(q^2) \, + \Delta V^{\alpha_s}(q^2) + \Delta V^{\Lambda}(q^2) \,, \\ A_1(q^2) &= \frac{2E}{m_B + m_{K^*}} \, \xi_{\perp}(q^2) + \Delta A_1^{\alpha_s}(q^2) + \Delta A_1^{\Lambda}(q^2) \,, \\ A_2(q^2) &= \frac{m_B}{m_B - m_{K^*}} \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] + \Delta A_2^{\alpha_s}(q^2) + \Delta A_2^{\Lambda}(q^2) \,, \\ A_0(q^2) &= \frac{E}{m_{K^*}} \, \xi_{\parallel}(q^2) + \Delta A_0^{\alpha_s}(q^2) + \Delta A_0^{\Lambda}(q^2) \,, \\ T_1(q^2) &= \xi_{\perp}(q^2) + \Delta T_1^{\alpha_s}(q^2) + \Delta T_1^{\Lambda}(q^2) \,, \\ T_2(q^2) &= \frac{2E}{m_B} \, \xi_{\perp}(q^2) + \Delta T_2^{\alpha_s}(q^2) + \Delta T_2^{\Lambda}(q^2) \,, \\ T_3(q^2) &= \left[\xi_{\perp}(q^2) - \xi_{\parallel}(q^2) \right] + \Delta T_3^{\alpha_s}(q^2) + \Delta T_3^{\Lambda}(q^2) \,, \end{split}$$

- ▶ The K^* helicity provides an extra valuable degree of freedom
- ▶ In the Heavy-Quark limit some relations among form factors arise:

$$\text{e.g.} \quad \frac{\epsilon_{-}^{*\mu} q^{\nu} \langle K_{-}^{*} | \bar{s} \sigma_{\mu\nu} P_{R} b | B \rangle}{i m_{B} \langle K_{-}^{*} | \bar{s} \epsilon_{-}^{*} P_{L} b | B \rangle} = 1 + \mathcal{O}(\alpha_{s}, \Lambda/m_{b})$$

▶ One can build observables that depend only on these ratios, e.g.:

$$P_5' = \sqrt{2} \frac{\operatorname{Re}(\mathcal{A}_0^L \mathcal{A}_{\perp}^{L*} - \mathcal{A}_0^R \mathcal{A}_{\perp}^{R*})}{\sqrt{|\mathcal{A}_0|^2 (|\mathcal{A}_{\perp}|^2 + |\mathcal{A}_{\parallel}|^2)}}$$

A full basis of "optimized" observables exists.

Mescia, Matias, Ramon, JV, 1202.4266 Descotes-Genon, Matias, Ramon, JV, 1207.2753

е

▶ These observables should be less sensitive to "miscalculations".

Javier Virto

Finite-width effects

(new)

Khodjamirian, Mannel, Offen 2006; Cheng, Khodjamirian, JV 2017, Descotes-Genon, Khodjamirian, JV, w.i.p.

$$\operatorname{Im}\langle 0|T\{j_{K^*}, j_{sb}\}|B\rangle \sim \langle 0|j_{K^*}|\underbrace{|K^*\rangle\langle K^*|}_{|K\pi\rangle\langle K\pi|}j_{sb}|B\rangle$$

▶ Order 10% finite-width effects, similar to $B \rightarrow \rho$ form factors.

Javier Virto

Theory Predictions for Rare B decays

Form Factors : q^2 -dependence from analyticity

 $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \, \bar{s} \, \Gamma_{\lambda}^{(T)} \, b \, | \bar{B}(k+q) \rangle$: Analytic structure in q^2 :

 $\widehat{\mathcal{F}}^{(T)}_{\lambda}(q^2)\equiv (q^2-m^2_{B^*_s})\,\mathcal{F}^{(T)}_{\lambda}(q^2)$ has no pole, only cut.

Javier Virto

Form Factors : q^2 -dependence from analyticity

▶ "z-parametrization" : $\widehat{\mathcal{F}}_{\lambda}^{(T)}(q^2(z))$ is analytic in |z| < 1

$$\mathcal{F}_{\lambda}^{(T)}(q^2) = rac{1}{(q^2 - m_{B_s^*}^2)} \sum_k lpha_k \, z(q^2)^k$$

Bourrely, Caprini, Lellouch

Javier Virto

E.g. $B \rightarrow K$ form factors $f_{0,+,T}$ from LQCD

 $(|z_{\rm phys}| < 0.15)$

	b_0^+	b_1^+	b_2^+	b_0^0	b_1^0	b_2^0	b_0^T	b_1^T	b_2^T
Mean	0.466	-0.885	-0.213	0.292	0.281	0.150	0.460	-1.089	-1.114
error	0.014	0.128	0.548	0.010	0.125	0.441	0.019	0.236	0.971
b_0^+	1	0.450	0.190	0.857	0.598	0.531	0.752	0.229	0.117
b_1^+		1	0.677	0.708	0.958	0.927	0.227	0.443	0.287
b_2^+			1	0.595	0.770	0.819	-0.023	0.070	0.196
b_{0}^{0}				1	0.830	0.766	0.582	0.237	0.192
b_1^0					1	0.973	0.324	0.372	0.272
b_2^0						1	0.268	0.332	0.269
b_0^T							1	0.590	0.515
b_1^T								1	0.897
b_2^T									1

Fermilab-MILC 1509.06235

Anatomy of $B \rightarrow M_{\lambda} \ell^+ \ell^-$ EFT Amplitudes

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors): $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

$$\blacktriangleright \text{ Non-Local: } \mathcal{H}_{\lambda}(q^2) = i\mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \, \langle \bar{M}_{\lambda}(k) | T \big\{ \mathcal{J}^{\mu}_{\text{em}}(x), \mathcal{C}_i \mathcal{O}_i(0) \big\} | \bar{B}(q+k) \rangle$$

Javier Virto

'Non-local' form factors

► QCD Factorization Beneke, Feldmann, Seidel 2001 $\mathcal{H}_{\lambda}(q^2) \sim \Delta C_9^{\lambda}(q^2) \mathcal{F}_{\lambda}(q^2) + \frac{1}{q^2} \Delta C_7^{\lambda}(q^2) \mathcal{F}_{\lambda}^T(q^2) + HSS + \mathcal{O}(\Lambda/m_B, \Lambda/E)$

▶ It is assumed that the charm loop is dominated by short distances

• Kink at $q^2 = 4m_c^2$ symptom of breaking of perturbativity

Javier Virto

Theory Predictions for Rare B decays

z-parametrisation for $\mathcal{H}_{\lambda}(q^2)$

Same strategy as form factors!

 \blacktriangleright Expansion needed for $|\textbf{\textit{z}}| < 0.52 ~(~-7\,{\rm GeV}^2 \leq q^2 \leq 14{\rm GeV}^2$)

Javier Virto

Theory Predictions for Rare B decays

Fit to *z*-parametrisation

Fit to *z*-parametrisation

SM predictions and Fit including $B \to K^* \mu^+ \mu^-$ data and $\mathcal{C}_9^{\mathrm{NP}}$:

The NP hypothesis with $\mathcal{C}_9^{\mathrm{NP}}\sim -1$ is favored strongly in the global fit

Prospects: LHC Run-2 unbinned fits to z-parametrization

Chrzaszcz, Mauri, Serra, Coutinho, van Dyk 1805.06378

Mauri, Serra, Coutinho 1805.06401

Unbinned fits to $B \to K^* \mu \mu$ (Left) and $B \to K^* \ell \ell$ (Right)

Descotes-Genon, Hofer, Matias, JV 1510.04239

□ Tiny uncertainites will allow to test hadronic contributions precisely

See also Altmannshofer, Straub 1503.06199, Ciuchini et al 1512.07157, Chobanova et al 1702.02234

Javier Virto

Theory Predictions for Rare B decays

'A posteriori' test of non-local effect

\Box Testing the data : K^* -helicity dependence

Altmannshofer, Niehoff, Stangl, Straub 1703.09189

□ Tiny uncertainites will allow to test hadronic contributions precisely

Javier Virto

Theory Predictions for Rare B decays

- EFT Predictions for rare decays are limited by the determination of 'local' and 'non-local' form factors.
- ► For 'local' form factors LQCD is promising, but:
 - 1. Need LCSRs for q^2 interpolation
 - 2. Finite width effects can be sizeable (currently beyond LQCD)
 - 3. Optimize observables exist, but power corrections
- ► The 'non-local' form factors are the focus of most current efforts
 - 1. Need new ideas from LQCD
 - 2. Analyticity methods promising, but still rely on factorization (() $q^2 < 0$
 - 3. Unitarity bounds?
 - 4. 'A posteriori' tests / combined fits to NP and data promising @ Phase II.
- Many things left out (large q^2 , baryonic, inclusive, EM corrections, ...)

Thank you

Extra slides

Bobeth, Chrzaszcz, van Dyk, Virto 2017

Experimental constraints :

▶ The residues of the poles are given by $B \to K^* \psi_n$:

$$\mathcal{H}_{\lambda}(q^2 \to M_{\psi_n}^2) \sim \frac{M_{\psi_n} f_{\psi_n}^* \mathcal{A}_{\lambda}^{\psi_n}}{M_B^2(q^2 - M_{\psi_n}^2)} + \cdots$$

► Angular analyses Belle, Babar, LHCb determine :

$$\begin{split} |r_{\perp}^{\psi_n}|, \, |r_{\parallel}^{\psi_n}|, \, |r_0^{\psi_n}|, \, \arg\{r_{\perp}^{\psi_n}r_0^{\psi_n*}\}, \, \arg\{r_{\parallel}^{\psi_n}r_0^{\psi_n*}\}, \\ \text{where} \quad r_{\lambda}^{\psi_n} \equiv \underset{q^2 \to M_{\psi_n}^2}{\text{Res}} \frac{\mathcal{H}_{\lambda}(q^2)}{\mathcal{F}_{\lambda}(q^2)} \sim \frac{M_{\psi_n}f_{\psi_n}^*\mathcal{A}_{\lambda}^{\psi_n}}{M_B^2 \mathcal{F}_{\lambda}(M_{\psi_n}^2)} \end{split}$$

▶ We produce correlated pseudo-observables from a fit (5+5).

Bobeth, Chrzaszcz, van Dyk, Virto 2017

(Prior) Fit to Experimental and theoretical pseudo-observables :

k	0	1	2
$\operatorname{Re}[\alpha_k^{(\perp)}]$	-0.06 ± 0.21	-6.77 ± 0.27	18.96 ± 0.59
$\operatorname{Re}[\alpha_k^{(\parallel)}]$	-0.35 ± 0.62	-3.13 ± 0.41	12.20 ± 1.34
$\operatorname{Re}[\alpha_k^{(0)}]$	0.05 ± 1.52	17.26 ± 1.64	-
$\operatorname{Im}[\alpha_k^{(\perp)}]$	-0.21 ± 2.25	1.17 ± 3.58	-0.08 ± 2.24
$\operatorname{Im}[\alpha_k^{(\parallel)}]$	-0.04 ± 3.67	-2.14 ± 2.46	6.03 ± 2.50
$\operatorname{Im}[\alpha_k^{(0)}]$	-0.05 ± 4.99	4.29 ± 3.14	-

Table 1: Mean values and standard deviations (in units of 10^{-4}) of the prior PDF for the parameters $\alpha_k^{(\lambda)}$.

The non-local ME of $O_{1,2}^c$ also contains a cut at low q^2 from intermediate "light-hadron" states:

 $\begin{aligned} \operatorname{Disc}[\mathcal{H}_{\lambda}(q^{2} > t_{+})] &\sim \sum_{X} \langle 0|j_{\mathrm{em}}|X_{cc}^{1^{--}}\rangle \langle X_{cc}^{1^{--}}K^{*}|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \\ \operatorname{Disc}[\mathcal{H}_{\lambda}(0 < q^{2} < t_{+})] &\sim \sum_{X} \langle 0|j_{\mathrm{em}}|X^{1^{--}}\rangle \langle X^{1^{--}}K^{*}|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \end{aligned}$

Light-hadron cut

- * Support for $\langle X^{1^{--}}K^*|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \ll \langle X^{1^{--}}_{cc}K^*|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle$:
- ► OZI rule.

► $\mathcal{B}(B \to K^{(*)}\omega) \approx 2 - 5 \cdot 10^{-6}$ (in agr. with QCDF from $[\bar{s}q][\bar{q}b]$)

$$\Rightarrow \langle K^*\omega | (\bar{s}c)(\bar{c}b) | \bar{B} \rangle \lesssim \underbrace{C_q/C_c}_{few\%} \langle K^*\omega | (\bar{s}q)(\bar{q}b) | \bar{B} \rangle$$

▶ Same argument for $\mathcal{B}(B \to K^{(*)}\phi)$

▶ In absence of OZI, the natural size of these BRs is 10^{-3} not 10^{-6} :

$$\begin{split} \mathcal{B}(B \to KJ/\psi) &= 9 \times 10^{-4} \quad \mathcal{B}(B \to K^*J/\psi) = 1.3 \times 10^{-3} \\ \mathcal{B}(B \to K[D^*\bar{D}]) &= 6 \times 10^{-3} \quad \mathcal{B}(B \to K[D^*\bar{D}^*]) = 8 \times 10^{-3} \\ \mathcal{B}(B \to K[D\bar{D}]) &= 5 \times 10^{-4} \end{split}$$

- ▶ Note also the total BR: $\mathcal{B}(B \to K^{(*)}[\bar{K}K]) \sim 10^{-5} \ll 10^{-3}$
- ► Test: $\mathcal{B}(B \to K^{(*)}X^{1--}(\text{high mass})) \ll 10^{-3}$

Conclusion: $OZI \rightarrow Two \text{ order of magnitude suppression.}$

- ▶ But CKM- and penguin-suppressed light-quark loops are there.
- ▶ Not OZI suppressed.
- ▶ Must be constrained if precision is sought (but rough estimate might suffice).
- ► Can do dispersive analysis Khodjamirian, Mannel, Wang 2012 ...
- ▶ Could use $b \rightarrow d$ analogues + U-spin.

Calculating Meson Transitions I : Inclusive $[B \rightarrow X_s \gamma, X_s \ell^+ \ell^-]$

Inclusive Heavy Meson Decay:

Optical Theorem
 Heavy-Quark Expansion
 Sublacting Change Function

□ Subleading Shape Functions

$$\Gamma(\bar{B} \to X_s \gamma)_{E_0} = \underbrace{\Gamma(b \to s\gamma) + \Gamma(b \to sg\gamma)}_{\text{Known (@ NNLO^{(1)})}} + \underbrace{\Gamma(b \to sq\bar{q}\gamma)}_{\text{Known (@ NLO^{(2)})}} + \cdots + \underbrace{\mathcal{O}(1/m_b)}_{\sim 5\%^{(3)}}$$

- ⁽¹⁾ Misiak et al (many papers) and a tiny few w/o Misiak
- ⁽²⁾ Huber, Poradzinski, JV, 1411.7677
- $^{(3)}$ For $E_0 \sim 1.6$ GeV, Benzke, Lee, Neubert, Paz, 1003.5012

$$\mathcal{B}_{s\gamma}^{\mathrm{th}} = (3.36 \pm 0.23) \cdot 10^{-4} \ (7\%)^{(4)}$$
 VS. $\mathcal{B}_{s\gamma}^{\mathrm{exp}} = (3.43 \pm 0.22) \cdot 10^{-4} \ (6\%)^{(5)}$

(4) Misiak, JV, et al, 1503.01789
 (5) CLEO + BaBar + Belle

Note:
$$\Gamma_{LO} \sim |\mathcal{C}_7|^2 + |\mathcal{C}_7'|^2$$

Javier Virto

Theory Predictions for Rare B decays

Complementarity with inclusive measurements at Belle-2

▶ Belle-II is directly sensitive to the $b \rightarrow s$ anomaly with $B \rightarrow X_s \mu^+ \mu^-$

Calculating Meson Transitions II : Leptonic

 $[B_s \to \ell^+ \ell^-]$

 $\propto \langle 0|\bar{s}\gamma^{\mu}\gamma_{5} b|B_{s}\rangle \equiv f_{B_{s}} p_{B}^{\mu}$ (Decay Constant)

	LQCD $^{(1)}$	QCDSRs (2)
f_B	186(4)	207(17)
f_{B_s}	224(5)	242(17)

 $^{(1)}$ FLAG 1607.00299 ; $^{(2)}$ Gelhausen, Khodjamirian, Pivovarov, Rosenthal 1305.5432

$$BR(B_s \to \ell\bar{\ell}) = \frac{\tau_{B_s} f_{B_s}^2 m_{B_s}^3}{2\pi} \sqrt{1 - \frac{4m_{\ell}^2}{m_{B_s}^2}} |\mathcal{C}_S^-|^2 + \left|\mathcal{C}_P^- + \frac{2m_{\ell}}{m_{B_s}} (\mathcal{C}_{10} - \mathcal{C}_{10}')\right|^2$$

 $\bar{\mathcal{B}}^{\mathrm{th}}_{s\mu} = (3.65 \pm 0.23) \cdot 10^{-9} \ (6.4\%)^{(3)}$ vs. $\bar{\mathcal{B}}^{\mathrm{exp}}_{s\mu} = (2.9 \pm 0.7) \cdot 10^{-9} \ (24\%)^{(4)}$

(main th. uncertainties: f_B and CKM; exp: statistic-dominated)

⁽³⁾ Bobeth, Gorbahn, Hermann, Misiak, Stamou, Steinhauser'2014 ; ⁽⁴⁾ CMS+LHCb 1411.4413

Javier Virto

Theory Predictions for Rare B decays

$b \rightarrow s\ell\ell$ Observables – Total ~ 174

$B_s \to \mu^+ \mu^-$	$B \to X_s \mu^+ \mu^-$	$B \to K^* \gamma$	$B \to X_s \gamma$	
$B \to K \mu \mu$	$B ightarrow K^* \mu \mu$	$B_s \to \Phi \mu \mu$	$\Lambda_b\to\Lambda\mu\mu$	
BRs	AOs	Low q^2	Large q^2	
R_K	R_{K^*}	LFU	LFUV	
LHCb	Belle/BaBar	ATLAS	CMS	

□ Observables with larger pulls:

Largest pulls	$\langle P_5' angle_{[4,6]}$	$\langle P_5' angle_{[6,8]}$	$R_K^{\left[1,6 ight]}$	$R_{K^*}^{[0.045,1.1]}$	$R_{K^{st}}^{[1.1,6]}$	$\mathcal{B}^{[2,5]}_{B_s\to\phi\mu^+\mu^-}$	$\mathcal{B}^{[5,8]}_{B_s\to\phi\mu^+\mu^-}$
Experiment	$-0.30 {\pm} 0.16$	$-0.51{\pm}0.12$	$0.745\substack{+0.097\\-0.082}$	$0.66\substack{+0.113\\-0.074}$	$0.685\substack{+0.122\\-0.083}$	$0.77 {\pm} 0.14$	$0.96{\pm}0.15$
SM prediction	$-0.82 {\pm} 0.08$	$-0.94{\pm}0.08$	$1.00{\pm}0.01$	$0.92{\pm}0.02$	$1.00 {\pm} 0.01$	$1.55{\pm}0.33$	$1.88{\pm}0.39$
Pull (σ)	-2.9	-2.9	+2.6	+2.3	+2.6	+2.2	+2.2
Prediction for $C_{9\mu}^{\rm NP} = -1.1$	$-0.50 {\pm} 0.11$	$-0.73 {\pm} 0.12$	$0.79{\pm}0.01$	$0.90{\pm}0.05$	$0.87{\pm}0.08$	$1.30{\pm}0.26$	$1.51{\pm}0.30$
Pull (σ)	-1.0	-1.3	+0.4	+1.9	+1.2	+1.8	+1.6

For $\Lambda_{\rm EW}, \Lambda_{\rm NP} \gg M_B$: General model-indep. parametrization of NP :

$$\mathcal{L}_{W} = \mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{QED}} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{\star} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\begin{aligned} \mathcal{O}_{1} &= (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) & \mathcal{O}_{2} &= (\bar{c}\gamma_{\mu}P_{L}T^{a}b)(\bar{s}\gamma^{\mu}P_{L}T^{a}c) \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} & \mathcal{O}_{7'} &= \frac{e}{16\pi^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu} \\ \mathcal{O}_{9\ell} &= \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{9'\ell} &= \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell) \\ \mathcal{O}_{10\ell} &= \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) & \mathcal{O}_{10'\ell} &= \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \end{aligned}$$

SM contributions to $C_i(\mu_b)$ known to NNLL Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06

 $\mathcal{C}_{7\mathrm{eff}}^{\mathrm{SM}} = -0.3, \ \mathcal{C}_{9}^{\mathrm{SM}} = 4.1, \ \mathcal{C}_{10}^{\mathrm{SM}} = -4.3, \ \mathcal{C}_{1}^{\mathrm{SM}} = 1.1, \ \mathcal{C}_{2}^{\mathrm{SM}} = -0.4, \ \mathcal{C}_{\mathrm{rest}}^{\mathrm{SM}} \lesssim 10^{-2}$

Javier Virto

Theory Predictions for Rare B decays