B-physics prospects for lattice QCD

Maxwell T. Hansen

April 23rd, 2019
Flavor anomalies

- **Flavor anomalies** = opportunity for BSM
- **QCD** = crucial for **confirming** significance and interpreting

\[
\text{experiment} = \text{SM} \times \text{perturbative QCD} \times (\text{non-perturbative QCD}) \\
+ \text{BSM} \times \text{perturbative QCD} \times (\text{non-perturbative QCD})
\]
Flavor anomalies

- Flavor anomalies = opportunity for BSM
- QCD = crucial for confirming significance and interpreting

\[\text{experiment} = \text{SM} \times \text{perturbative QCD} \times (\text{non-perturbative QCD}) + \text{BSM} \times \text{perturbative QCD} \times (\text{non-perturbative QCD}) \]

- QCD is complicated
- Difficult to extract non-perturbative predictions
Lattice QCD is a powerful tool for extracting QCD predictions

\[
\text{observable} = \int \mathcal{D}\phi \ e^{iS} \begin{bmatrix} \text{interpolator} \\ \text{for observable} \end{bmatrix}
\]
To proceed we have to make three modifications:

1. **nonzero lattice spacing**

2. **finite volume, \(L \)**

3. **Euclidean signature**

Also... Unphysical quark masses \(M_{\pi, \text{lattice}} > M_{\pi, \text{our universe}} \)

But, physical masses = increasingly common
Matrix elements and LQCD

- Single-hadron initial and final states
 - Calculated directly in LQCD
 - Euclidean irrelevant / lattice $\rightarrow 0$ / volume $\rightarrow \infty$
- New theory challenge = QED
- See FLAG averages

$B \rightarrow \pi \ell^+ \ell^-$
Matrix elements and LQCD

- **Single-hadron initial and final states**
 - Calculated directly in LQCD
 - Euclidean irrelevant / lattice $\rightarrow 0$ / volume $\rightarrow \infty$
 - New theory challenge = QED
 - See FLAG averages

- **Two-hadron final states**
 - Significantly more challenging
 - Subtle **finite volume** issues
 - Cannot treat resonances as stable particles
Matrix elements and LQCD

- Single-hadron initial and final states
 - Calculated directly in LQCD
 - Euclidean irrelevant / lattice $\rightarrow 0$ / volume $\rightarrow \infty$
 - New theory challenge = QED
 - See FLAG averages

- Two-hadron final states
 - Significantly more challenging
 - Subtle finite volume issues
 - Cannot treat resonances as stable particles

- Multi-hadron states for $\sqrt{s} > 4M_\pi$
 - Volume mixes the two-, four-, six-particle contributions
 - All or nothing (must constrain the entire S-matrix for a prediction)
Single-hadron states

Three categories:

- **Decay constants**
 \[\langle 0 | \mathcal{J} | 1 \rangle \]
 \[f_\pi, f_K, f_B \]

- **Form factors**
 \[\langle 1 | \mathcal{J} | 1' \rangle \]
 \[f_{K^0\pi^-}(q^2), f_{B\rightarrow\pi}(q^2) \]

- **Mixing parameters**
 \[\langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle \]
 \[B_{B_d}^{(n)}, B_{B_s}^{(n)} \]
Single-hadron states

- Three categories:
 - Decay constants
 - Form factors
 - Mixing parameters

\[
\begin{align*}
\langle 0 | \mathcal{J} | 1 \rangle & \quad f_\pi, f_K, f_B \\
\langle 1 | \mathcal{J} | 1' \rangle & \quad f_+^{K^0 \pi^-}(q^2), f_{B \rightarrow \pi}(q^2) \\
\langle \bar{1} | \mathcal{H}^{\Delta F=2} | 1 \rangle & \quad B_{B_d}^{(n)}, B_{B_s}^{(n)}
\end{align*}
\]

- Summary of the approach...
 - Importance sampling QCD gauge fields → correlators

\[
\langle A_{\mu}^{\text{bare}}(0) \pi_{p}(-\tau) \rangle_{T,L,m_q,a} = + + \cdots
\]
Single-hadron states

- Three categories:
 - Decay constants
 - Form factors
 - Mixing parameters

\[
\begin{align*}
\langle 0 | \mathcal{J} | 1 \rangle & \quad \langle 1 | \mathcal{J} | 1' \rangle \\
 f_\pi, f_K, f_B & \quad f_K^0 \pi^- (q^2), f_B \to \pi (q^2) \\
\langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle & \\
B_{B_d}^{(n)}, B_{B_s}^{(n)}
\end{align*}
\]

- Summary of the approach...
 - Importance sampling QCD gauge fields → correlators

\[
\langle A_{\mu}^{\text{bare}} (0) \pi_p (-\tau) \rangle_{T,L,m_q,\alpha}
\]

- Temporal length
- Volume
- Quark masses
- Lattice spacing
Single-hadron states

- Three categories:
 - Decay constants
 - Form factors
 - Mixing parameters

\[\langle 0 | \mathcal{J} | 1 \rangle \quad \langle 1 | \mathcal{J} | 1' \rangle \quad \langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle \]

\[f_\pi, f_K, f_B \quad f_+^{K^0\pi^-}(q^2), f_{B\to\pi}(q^2) \quad B_{B_d}^{(n)}, B_{B_s}^{(n)} \]

- Summary of the approach...
 - Importance sampling QCD gauge fields → correlators

\[Z_{\text{renorm}} \langle A_{\mu}^{\text{bare}}(0) \pi_p(-\tau) \rangle_{T,L,m_q,a} + \cdots \]

- Renormalization of currents required (typically non-perturbative)

- Temporal length
- Volume
- Quark masses
- Lattice spacing
Single-hadron states

- Three categories:
 - Decay constants
 - Form factors
 - Mixing parameters

\[\langle 0 | \mathcal{J} | 1 \rangle \quad \langle 1 | \mathcal{J} | 1' \rangle \quad \langle \bar{1} | \mathcal{H}^{\Delta F=2} | 1 \rangle \]

\[f_\pi, f_K, f_B \quad f_{+}^{K^0\pi^-}(q^2), \quad f_{B \rightarrow \pi}(q^2) \quad B_{B_d}^{(n)}, B_{B_s}^{(n)} \]

- Summary of the approach...
 - Importance sampling QCD gauge fields \(\rightarrow \) correlators

\[Z^\text{renorm} \langle A_{\mu}^{\text{bare}}(0) \pi_p(-\tau) \rangle_{T,L,m_q,a} \rightarrow Z_\pi e^{-E_\pi \tau} i\rho_\mu f_\pi(T,L,m_q,a) \]

- Renormalization of currents required (typically non-perturbative)
- Large time separation filters excited states

- temporal length
 - volume
 - quark masses
 - lattice spacing
Single-hadron states

- Three categories:
 - Decay constants
 - Form factors
 - Mixing parameters

\[\langle 0 | \mathcal{J} | 1 \rangle \quad \langle 1 | \mathcal{J} | 1' \rangle \quad \langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle \]

\[f_\pi, f_K, f_B \quad f_+^{K^0\pi^-}(q^2), f_{B\to\pi}(q^2) \quad B_{B_d}^{(n)}, B_{B_s}^{(n)} \]

- Summary of the approach...
 - Importance sampling QCD gauge fields \(\rightarrow \) correlators

\[Z^{\text{renorm}} \langle A_\mu^{\text{bare}}(0) \pi_p(-\tau) \rangle_{T,L,m_q,a} \quad \longrightarrow \quad Z_\pi e^{-E_\pi \tau} \quad \text{i} p_\mu f_\pi(T, L, m_q, a) \]

- temporal length
- volume
- quark masses
- lattice spacing
- Renormalization of currents required (typically non-perturbative)
- Large time separation filters excited states
- Extrapolation/interpolation to physical point

\[\lim_{T,L \to \infty} \lim_{a \to 0} f_\pi(T, L, m_q^{\text{phys}}, a) = f_\pi^{\text{phys}} \]
Decay constants $\langle 0|\mathcal{J}|1 \rangle$

- **Summary (from Bazavov et. al. [Fermilab/MILC] 2018)**

 - f_{D^+} and f_{D_s}
 - Fermilab/MILC 18
 - ETM 14
 - Fermilab/MILC 14
 - BES 3 + CKM unitarity
 - RBC/UKQCD 17
 - χQCD 14
 - HPQCD 12
 - Fermilab/MILC 11 (Clover c)
 - HPQCD 10

 - f_{B^+} and f_{B_s}
 - Fermilab/MILC 18
 - HPQCD 17 (pseudoscalar current)
 - ETM 16
 - HPQCD 13 (NRQCD b)
 - RBC/UKQCD 14
 - HPQCD 12 (NRQCD b)
 - HPQCD 11 (HISQ b)
 - Fermilab/MILC 11 (Clover b)
Decay constants $\langle 0 | \mathcal{J} | 1 \rangle$

Summary (from Bazavov et. al. [Fermilab/MILC] 2018)

$\bar{f}_{D^+} f_{D^0}$

- Fermilab/MILC 18
- ETM 14
- Fermilab/MILC 14
- BES 3 + CKM unitarity
- RBC/UKQCD 17
- χQCD 14
- HPQCD 12
- Fermilab/MILC 11 (Clover c)
- HPQCD 10

\bar{f}_{D_s}

$\bar{f}_{B^+} f_{B^0}$

- Fermilab/MILC 18
- HPQCD 17 (pseudoscalar current)
- ETM 16
- HPQCD 13 (NRQCD b)
- RBC/UKQCD 14
- HPQCD 12 (NRQCD b)
- HPQCD 11 (HISQ b)
- Fermilab/MILC 11 (Clover b)

Current precision sufficient for BES III, BELLE II

- Fermilab/MILC includes QED uncertainty (not yet rigorous)
- MILC quoting higher precision than any other 2+1(+1) calculation

Need comparable precision from other calculations to cross-check
lattice QCD + QED

- Relevant for sub-percent uncertainties

$$\alpha_{\text{QED}} \sim \frac{m_u - m_d}{\Lambda_{\text{QCD}}} \sim 1\%$$
lattice QCD + QED

- Relevant for sub-percent uncertainties
- Meaning of decay constants
- Pure QCD

\[\Gamma(K^- \to \ell^- \bar{\nu}_\ell) = \frac{G_F^2 |V_{us}|^2 f_K^2}{8\pi} m_K m_\ell \left(1 - \frac{m_\ell^2}{m_K^2}\right)^2 \]

\[\alpha_{\text{QED}} \sim \frac{m_u - m_d}{\Lambda_{\text{QCD}}} \sim 1\% \]
lattice QCD + QED

- Relevant for sub-percent uncertainties

Meaning of decay constants

- Pure QCD
 \[
 \Gamma(K^+ \rightarrow \ell^- \bar{\nu}_\ell) = \frac{G_F^2 |V_{us}|^2 f_K^2}{8\pi} m_K m_\ell^2 \left(1 - \frac{m_\ell^2}{m_K^2}\right)^2
 \]

- QCD + QED (GRS scheme)
 \[
 \Gamma(K^+ \rightarrow \mu^- \bar{\nu}_\mu [\gamma]) = (1.0032 \pm 0.0011) \Gamma^{(0)}(K^+ \rightarrow \mu^- \bar{\nu}_\mu)
 \]

C. Sachrajda (Durham flavour workshop) • Di Carlo et al. in preparation
lattice QCD + QED

- Relevant for sub-percent uncertainties

- Meaning of decay constants
 - Pure QCD
 \[
 \Gamma(K^- \rightarrow \ell^- \bar{\nu}_\ell) = \frac{G_F^2 |V_{us}|^2 f_K^2 m_K m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_K^2}\right)^2
 \]
 - QCD + QED (GRS scheme)
 \[
 \Gamma(K^- \rightarrow \mu^- \bar{\nu}_\mu [\gamma]) = (1.0032 \pm 0.0011) \Gamma^{(0)}(K^- \rightarrow \mu^- \bar{\nu}_\mu)
 \]
 C. Sachrajda (Durham flavour workshop) • Di Carlo et al. in preparation

- QED in a box
 - Periodicity incompatible with Gauss law
 - QED = long range
 - Require modification (vanishes as \(L \rightarrow \infty \))

- Different soft scales for different particles
 - Well-understood for pions and kaons
 - \(B \) and \(D \) = different soft scale → requires theory developments
Neutral meson mixing $\langle \tilde{1} | \mathcal{H}^{\Delta F=2} | 1 \rangle$

- B-mixing dominated by local matrix element

![Diagram showing B_q and \bar{B}_q connected through O_{ji}^g.]
Neutral meson mixing \(\langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle \)

- B-mixing dominated by local matrix element

\[B_q \rightarrow O^q_i \rightarrow \overline{B}_q \]

- Summary (from Bazavov et al. [Fermilab/MILC] 2016)

\[\xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_{B_d} \sqrt{\hat{B}_{B_d}}} \]

- Lattice precision (~3-4%) is well behind even older experiments (~0.06 - 0.2%)
- Challenging to find optimal ‘discretization’ (lattice definition of quarks)
Neutral meson mixing $\langle 1 | \mathcal{H}^{\Delta F=2} | 1 \rangle$

- B-mixing dominated by local matrix element

\[\begin{align*}
B_q & \quad \mathcal{O}_i^q \quad \bar{B}_q
\end{align*} \]

- Summary (from Bazavov et al. [Fermilab/MILC] 2016)

\[\xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_{B_d} \sqrt{\hat{B}_{B_d}}} \]

- Lattice precision (~3-4%) is well behind even older experiments (~0.06 - 0.2%)

- Challenging to find optimal 'discretization' (lattice definition of quarks)

- Extrapolate to heavy mass relativistic quarks

- RBC/UKQCD 2018

- No effective action for b quark
Form factors $\langle 1|\mathcal{J}|1' \rangle$

- Significantly more information (functions vs numbers)
- Conformal mapping \rightarrow z-expansion \rightarrow wider kinematic range

Report z coefficients + correlations

Bhattacharya, Hill, Paz (2011)
Form factors $\langle 1 | \mathcal{J} | 1' \rangle$

- Significantly more information (functions vs numbers)
- Conformal mapping \rightarrow z-expansion \rightarrow wider kinematic range

Report z coefficients + correlations

Joint fit to LQCD and experiment \rightarrow CKM

Better precision needed for BES III, LHCb and BELLE II

Bhattacharya, Hill, Paz (2011)

Kronfeld (Durham workshop) (2019)
Form factors $\langle 1|\mathcal{J}|1' \rangle$

Example: $f^{B \to \pi}(q^2)$

See new FLAG report/website for details

Please cite original work (each figure has a .bib)
Matrix elements and LQCD

- Single-hadron initial and final states
 - Calculated directly in LQCD
 - Euclidean irrelevant / lattice $\to 0$ / volume $\to \infty$
 - New theory challenge = QED
 - See FLAG averages

- Two-hadron final states
 - Significantly more challenging
 - Subtle finite volume issues
 - Cannot treat resonances as stable particles

- Multi-hadron states for $\sqrt{s} > 4M_\pi$
 - Volume mixes the two-, four-, six-particle contributions
 - All or nothing (must constrain the entire S-matrix for a prediction)
Multi-hadron lattice quantities

- ‘On the lattice’ we calculate **finite-volume energies** and **matrix elements**

\[\langle \mathcal{O}_j(\tau)\mathcal{O}_i^\dagger(0) \rangle = \sum_n \langle 0|\mathcal{O}_j(\tau)|E_n\rangle\langle E_n|\mathcal{O}_i^\dagger(0)|0\rangle = \sum_n e^{-E_n(L)\tau} Z_{n,j} Z_{n,i}^* \]

- Determine **optimized operators** by diagonalizing correlator matrix (GEVP)

\[\langle \Omega_m(\tau)\Omega_m^\dagger(0) \rangle \sim e^{-E_m(L)\tau} + \ldots \]
\[\langle \Omega_{m'}(\tau) J(0) \Omega_{m'}^\dagger(-\tau) \rangle \sim e^{-E_{m'}\tau} e^{-E_m\tau} \langle E_{m'}|J(0)|E_m\rangle + \ldots \]

- Our task is relate \(E_n(L) \) and \(\langle E_{m'}|J(0)|E_m\rangle \) to experimental observables
Multi-hadron processes from LQCD

Key Idea: We can use the finite volume as a **tool** to extract multi-hadron observables

- **Scattering (from finite-volume energies)**

- **Transitions (from finite-volume energies + matrix elements)**
Multi-hadron processes from LQCD

Key Idea: We can use the finite volume as a tool to extract multi-hadron observables.

- **Scattering (from finite-volume energies)**
 - $E_2(L)$
 - $E_1(L)$
 - $E_0(L)$

- **Transitions (from finite-volume energies + matrix elements)**
 - $B \rightarrow K \pi$
The finite-volume as a tool

Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions
 \[\vec{p} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3 \]

- L is large enough to neglect $e^{-M_{\pi}L}$
The finite-volume as a tool

- **Finite-volume set-up**

 - **cubic**, spatial volume (extent L)
 - **periodic** boundary conditions
 \[\vec{p} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3 \]
 - L is large enough to neglect $e^{-M\pi L}$

- Scattering observables leave an *imprint* on finite-volume quantities
The finite-volume as a tool

Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$\tilde{p} = \frac{2\pi}{L} \tilde{n}, \quad \tilde{n} \in \mathbb{Z}^3$$

- L is large enough to neglect $e^{-M_\pi L}$

Scattering observables leave an **imprint** on finite-volume quantities

Consider a weakly-interacting, two-body system with no bound states

$$E_0 = 2M_\pi$$

Infinite-volume ground state

$$\mathcal{M}_{\ell=0}(2M_\pi) = -32\pi M_\pi a$$

Information is in the scattering amplitude
The finite-volume as a tool

- **Finite-volume set-up**
 - cubic, spatial volume (extent L)
 - periodic boundary conditions
 \[\tilde{p} = \frac{2\pi}{L} \tilde{n}, \quad \tilde{n} \in \mathbb{Z}^3 \]

- **L** is large enough to neglect $e^{-M_\pi L}$

- **Scattering observables leave an *imprint* on finite-volume quantities**
 - Consider a weakly-interacting, two-body system with no bound states

 \[
 E_0 = 2M_\pi \quad \text{Infinite-volume ground state}
 \]

 \[
 \mathcal{M}_{\ell=0}(2M_\pi) = -32\pi M_\pi a \\
 \text{Information is in the scattering amplitude}
 \]

 \[
 E_0(L) = 2M_\pi + \frac{4\pi a}{M_\pi L^3} + \mathcal{O}(1/L^4)
 \]

 Huang, Yang (1958)
The finite-volume as a tool

Finite-volume set-up

- **cubic**, spatial volume (extent L)
- **periodic** boundary conditions
 \[
 \tilde{p} = \frac{2\pi}{L} \tilde{n}, \quad \tilde{n} \in \mathbb{Z}^3
 \]
- L is large enough to neglect $e^{-M_\pi L}$

Scattering observables leave an **imprint** on finite-volume quantities

Consider a **weakly-interacting, two-body system** with no bound states

Infinite-volume ground state

\[
E_0 = 2M_\pi
\]

Information is in the scattering amplitude

\[
\mathcal{M}_{\ell=0}(2M_\pi) = -32\pi M_\pi a
\]

Finite-volume ground state

\[
E_0(L) = 2M_\pi + \frac{4\pi a}{M_\pi L^3} + O(1/L^4)
\]

Huang, Yang (1958)
General two-to-two scattering

- Lüscher’s formalism + extensions give a general mapping

\[
\det \left[\mathcal{M}_2^{-1}(E^*_n) + F(E_n, \vec{P}, L) \right] = 0
\]

- All results are contained in a generalized quantization condition

- Matrices in angular momentum, spin and channel space

Using the result

- Simplest case is a single channel
 (e.g. for pions in a p-wave the relation reduces to)

\[M_2(E^*_n) = -1/F(E_n, \vec{P}, L) \]

\[M_2 \propto e^{2i\delta} - 1 \]

Using the result

- Simplest case is a single channel
 (e.g. for pions in a p-wave the relation reduces to)

\[
\mathcal{M}_2\left(E_n^* \right) = -\frac{1}{F\left(E_n, \vec{P}, L \right)}
\]

\[
\mathcal{M}_2 \propto e^{2i\delta} - 1
\]

Using the result

- Simplest case is a single channel
 (e.g. for pions in a p-wave the relation reduces to)

\[\mathcal{M}_2(E_n^*) = -\frac{1}{F(E_n, \vec{P}, L)} \]

\[\mathcal{M}_2 \propto e^{2i\delta} - 1 \]

Using the result

- Simplest case is a single channel
 (e.g. for pions in a p-wave the relation reduces to)

\[M_2(E_n^*) = -\frac{1}{F(E_n, \vec{P}, L)} \]

\[M_2 \propto e^{2i\delta} - 1 \]

Using the result

- Simplest case is a single channel
 (e.g. for pions in a p-wave the relation reduces to)

\[\mathcal{M}_2(E_n^*) = -\frac{1}{F(E_n, \vec{P}, L)} \]

\[\mathcal{M}_2 \propto e^{2i\delta} - 1 \]

$\rho \rightarrow \pi \pi$

$I^G(J^{PC}) = 1^+(1--)$

Alexandrou et al. (2017)
$N_f=2+1$, $m_\pi=316$ MeV

$am_\rho = 0.4609(16)(14)$
$g_{\rho\pi\pi} = 5.69(13)(16)$

Andersen et al. (2018)
$N_f=2+1$, $m_\pi=220$ MeV

Guo et al. (2016)
$N_f=2$, $m_\pi=226$ MeV

Andersen et al. (2018)
$N_f=2+1$, $m_\pi=220$ MeV

$I^G(J^{PC}) = 1^+(1--)$
Coupled channels

- The cubic volume mixes different partial waves...

 e.g. \(K\pi \to K\pi \)
 \[\bar{P} \neq 0 \quad \Rightarrow \quad \det \left[\begin{pmatrix} M_s^{-1} & 0 \\ 0 & M_p^{-1} \end{pmatrix} + \begin{pmatrix} F_{ss} & F_{sp} \\ F_{ps} & F_{pp} \end{pmatrix} \right] = 0 \]

 ...as well as different flavor channels...

 e.g. \(a = \pi\pi \), \(b = K\bar{K} \)
 \[\det \left[\begin{pmatrix} M_a \to a & M_a \to b \\ M_b \to a & M_b \to b \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} \right] = 0 \]

 MTH, Sharpe (2012) • Briceño, Davoudi (2012)
Coupled channels

The cubic volume mixes different partial waves...

e.g. $K\pi \rightarrow K\pi$

$\bar{P} \neq 0 \quad \Rightarrow \quad \det \left[\begin{pmatrix} \mathcal{M}_s^{-1} & 0 \\ 0 & \mathcal{M}_p^{-1} \end{pmatrix} + \begin{pmatrix} F_{ss} & F_{sp} \\ F_{ps} & F_{pp} \end{pmatrix} \right] = 0$

...as well as different flavor channels...

e.g. $a = \pi\pi$

$b = K\bar{K}$

$\Rightarrow \quad \det \left[\begin{pmatrix} \mathcal{M}_{a\rightarrow a} & \mathcal{M}_{a\rightarrow b} \\ \mathcal{M}_{b\rightarrow a} & \mathcal{M}_{b\rightarrow b} \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} \right] = 0$

The road to physics...

Calculate a matrix of correlators with a large & varied operator basis

$\langle \mathcal{O}_a(\tau)\mathcal{O}_b^\dagger(0) \rangle$

Diagonalize (GEVP) to reliably extract finite-volume energies

$\langle \Omega_m(\tau)\Omega_m^\dagger(0) \rangle \sim e^{-E_m(L)\tau}$

Vary L and P to recover a dense set of energies

$[000], A_1$

$[001], A_1$

$[011], A_1$

$E_n(L)$

MTH, Sharpe (2012) • Briceño, Davoudi (2012)
Coupled channels

- The cubic volume mixes different partial waves...

 \[K\pi \rightarrow K\pi \quad \tilde{P} \neq 0 \quad \text{det} \left[\begin{pmatrix} M_s^{-1} & 0 \\ 0 & M_p^{-1} \end{pmatrix} + \begin{pmatrix} F_{ss} & F_{sp} \\ F_{ps} & F_{pp} \end{pmatrix} \right] = 0 \]

 ...as well as different flavor channels...

 e.g. \[a = \pi\pi \quad b = K\bar{K} \quad \text{det} \left[\begin{pmatrix} M_{a\rightarrow a} & M_{a\rightarrow b} \\ M_{b\rightarrow a} & M_{b\rightarrow b} \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} \right] = 0 \]

- The road to physics...

 Calculate a matrix of correlators with a large & varied operator basis

 \[\langle \mathcal{O}_a(\tau)\mathcal{O}_b^\dagger(0) \rangle \]

 Diagonalize (GEVP) to reliably extract finite-volume energies

 \[\langle \Omega_{m}(\tau)\Omega_{m}^\dagger(0) \rangle \sim e^{-E_m(L)\tau} \]

 Identify a broad list of K-matrix parametrizations

 polynomials and poles
 EFT based
 dispersion theory based

 Vary L and P to recover a dense set of energies

 \[\begin{align*}
 &[000], A_1 & \bullet & \bullet & \bullet & \bullet & \bullet \\
 &[001], A_1 & \bullet & \bullet & \bullet & \bullet & \bullet \\
 &[011], A_1 & \bullet & \bullet & \bullet & \bullet & \bullet
 \end{align*} \]

 \[E_n(L) \]
Coupled channels

- The cubic volume mixes different partial waves…
 \[K\pi \rightarrow K\pi \quad \bar{P} \neq 0 \]
 \[
 \det \left[\begin{pmatrix} M_s^{-1} & 0 \\ 0 & M_p^{-1} \end{pmatrix} + \begin{pmatrix} F_{ss} & F_{sp} \\ F_{ps} & F_{pp} \end{pmatrix} \right] = 0
 \]
 …as well as different flavor channels…
 \[a = \pi\pi \quad b = K\bar{K} \]
 \[
 \det \left[\begin{pmatrix} M_{a\rightarrow a} & M_{a\rightarrow b} \\ M_{b\rightarrow a} & M_{b\rightarrow b} \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} \right] = 0
 \]

- The road to physics…

 Identify a broad list of K-matrix parametrizations
 - polynomials and poles
 - EFT based
 - dispersion theory based

 Perform global fits to the finite-volume spectrum

 Calculate a matrix of correlators with a large & varied operator basis
 \[\langle O_a(\tau)O_b^\dagger(0) \rangle \]

 Diagonalize (GEVP) to reliably extract finite-volume energies
 \[\langle \Omega_m(\tau)\Omega_m^\dagger(0) \rangle \sim e^{-E_m(L)\tau} \]

 Vary \(L \) and \(P \) to recover a dense set of energies
 \[[000], A_1 \quad [001], A_1 \quad [011], A_1 \]
 \[E_n(L) \]

MTH, Sharpe (2012) • Briceño, Davoudi (2012)
$I^G(J^{PC}) = 0^+(0^{++})$

Coupled-channel scattering

\[\rho_i \rho_j |t_{ij}|^2 \]

$m_\pi \sim 390\text{MeV}$

$\pi\pi \rightarrow \pi\pi$

$K\bar{K} \rightarrow K\bar{K}$

$\pi\pi \rightarrow K\bar{K}$

σ \hspace{1cm} f_0 \hspace{1cm} $|\frac{c_{K\bar{K}}}{c_{\pi\pi}}|^2 = 1.4(3)$

Multi-hadron processes from LQCD

Key Idea: We can use the finite volume as a **tool** to extract multi-hadron observables

- **Scattering (from finite-volume energies)**
 - $E_2(L)$
 - $E_1(L)$
 - $E_0(L)$

- **Transitions (from finite-volume energies + matrix elements)**
 - $\langle 2|J^1 \rangle_L$
 - $\langle 2|J^2 \rangle_L$
 - $B \rightarrow K\pi$
Multi-hadron processes from LQCD

Key Idea: We can use the finite volume as a tool to extract multi-hadron observables

- **Scattering (from finite-volume energies)**

 \[
 E_2(L) \rightarrow \langle 2 | J | 1 \rangle_L \\
 E_1(L) \rightarrow \langle 2 | J | 2 \rangle_L \\
 E_0(L)
 \]

- **Transitions (from finite-volume energies + matrix elements)**

 \[
 \langle J \rangle | 1 \rangle \rightarrow \langle J \rangle | 2 \rangle \\
 B \rightarrow K \pi
 \]

Recent Review: *Lattice QCD and Three-particle Decays of Resonances*
MTH & Sharpe [1901.00483]
Multi-hadron processes from LQCD

KEY IDEA: We can use the finite volume as a tool to extract multi-hadron observables

- **Scattering (from finite-volume energies)**
 - $E_2(L)$
 - $E_1(L)$
 - $E_0(L)$

- **Transitions (from finite-volume energies + matrix elements)**
 - $\langle 2 | \mathcal{J} | 1 \rangle$
 - $\langle 2 | \mathcal{J} | 2 \rangle$
 - $B \rightarrow K\pi$
Multi-hadron matrix elements

- Theoretical method established for many observables

- Weak decay
 \[\langle \pi \pi, \text{out} | \mathcal{H} | K \rangle \equiv \text{Diagram} \]

- Time-like form factors
 \[\langle \pi \pi, \text{out} | J_\mu | 0 \rangle \equiv \text{Diagram} \]

Meyer (2011)

- Resonance form factors
 \[\langle K \pi, \text{out} | J_{\alpha \beta} | B \rangle \equiv \text{Diagram} \]

- Particles with spin
 \[\langle N \pi, \text{out} | J_\mu | N \rangle \equiv \text{Diagram} \]
Pion photo-production

- Formal relation

\[\langle \pi \pi, \text{out} | J_\mu | \pi \rangle \equiv \]

get this from the lattice

\[| \langle n, L | J_\mu | \pi \rangle |^2 = \langle \pi | J_\mu | \pi \pi, \text{in} \rangle \mathcal{R}(E_n, L) \langle \pi \pi, \text{out} | J_\mu | \pi \rangle \]

experimental observable

Briceño, MTH, Walker-Loud (2015)

- Numerical implementation

\(m_\pi \approx 400 \text{MeV} \)

\(m_\pi \approx 320 \text{MeV} \)

Take home messages…

- **Single hadron states**
 - Decay constants = competitive with experiment
 - Mixing matrix elements = less competitive
 - Sub-percent uncertainty → QED

- **Multi-hadron states**
 - Resonance form-factor calculations beginning
 - $B \to K \pi \ell^+ \ell^-$ underway (Meinel et al.)

Thanks!
Backup Slides
Lots of activity…

\[\rho \rightarrow \pi \pi \]

- CP-PACS/PACS-CS 2007, 2011
- ETMC 2010
- Lang et al. 2011
- Pellisier 2012
- RQCD 2015
- Guo et al. 2016
- Fu et al. 2016
- Bulava et al. 2016
- Alexandrou et al. 2017

\[\kappa \rightarrow K \pi \]

\[K^* \rightarrow K \pi \]

- Lang et al. 2012
- Prelovsek et al. 2013
- Wilson et al. 2015
- RQCD 2015
- Brett et al. 2018

\[\sigma \rightarrow \pi \pi \]

- Prelovsek et al. 2010
- Fu 2013
- Wakayama 2015
- Howarth and Giedt 2017
- Briceño et al. 2017

\[\kappa(700) \]

\[J^P = 1^- \]

\[a_0(980) \rightarrow \pi \eta, K \bar{K} \]

- Dudek et al. 2016

\[\sigma, f_0, f_2 \rightarrow \pi \pi, K \bar{K}, \eta \eta \]

- Briceño et al. 2017

See the recent review by Briceño, Dudek and Young
Weak decays...

get this from the lattice

$$|\langle n, L | \mathcal{H}_W | K \rangle|^2 = R(E_n, L)|\langle \pi\pi, \text{out} | \mathcal{H}_W | K \rangle|^2$$

depends on scattering phase shift

Lellouch, Lüscher (2001)

Three steps to lattice weak decay

- Calculate finite-volume energies \rightarrow $\pi\pi$ scattering phase $\rightarrow R(E_n, L)$
- Calculate renormalized finite-volume matrix elements
- Combine $R(E_n, L)$ with f.v. matrix elements \rightarrow decay amplitudes

Complete numerical calculation by RBC/UKQCD

RBC/UKQCD, e.g. PRL 2015, (1505.07863)
D decays...

get this from the lattice

$$\langle n, L | \mathcal{H}_W | D \rangle = \begin{pmatrix} C_{\pi\pi} & C_{K\bar{K}} & C_{\eta\eta} \end{pmatrix}$$

depends on scattering matrix

- Coupled channels mix in the finite volume
- Three steps to D decays
 - Calculate many finite-volume energies
 → coupled scattering → C_{xy}
 - Calculate many renormalized finite-volume matrix elements
 - Extract amplitudes in a global fit

- Important caveat: The relation ignores $\pi\pi\pi\pi$ states

Experimental observables

$$\begin{pmatrix}
\langle \pi\pi, \text{out} | \mathcal{H}_W | D \rangle \\
\langle K\bar{K}, \text{out} | \mathcal{H}_W | D \rangle \\
\langle \eta\eta, \text{out} | \mathcal{H}_W | D \rangle
\end{pmatrix}$$

MTH, Sharpe (2012)
Three-hadron scattering

- Formalism is complete for two and three (identical) scalars

- Currently exploring utility through numerical toy examples

Volume effects on an Efimov state

Model of a 3-particle resonance

Briceño, MTH, Sharpe (2017)

Recent review for Annual Review of Nuclear and Particle Physics

MTH, Sharpe (2019) [1901.00483]