Flavor Opportunities at High pT

Fady Bishara

SM@LHC 2019 Universität Zürich 25 April

European Research Council Established by the European Commission

- (1) Heads: 1^{st} & 2^{nd} gen. Yukawas; (focus on charm Yukawa)
- (2) Tails: EFT operators (LFU) [See Fuentes-Martin, Takahashi, Reiners talks]

Motivation

Is the mechanism responsible for EWSB and fermion mass generation in the SM <u>minimal</u>?

What we know:

• One complex scalar doublet acquires a vev, breaks EW symmetry and gives W/Z and third generation fermions (most) of their masses

What we don't know:

- Do the first and second generation fermions also get their masses from the same doublet?
- Is this Higgs vev the only source of EWSB?

The SM itself is not minimal with regards to its matter content. And, 20/26 of its free parameters are associated with the flavor sector.

1st and 2nd generation Yukawas

- Exclusive Higgs decays $h \to MV$
- Vh and associated hQ production
- Higgs differential distributions
- Charge assymmetry in $W^{\pm}h$

Bodwin et al.: 1306.5770 & 1407.6695; Kagan et al. 1406:1722 Koenig & Neubert, 1505.03870

Perez et al. 1503.00290 & 1505.06689;Brivio et al. 1505.06689

Bishara et al. Soreq et al. 1606.09621

Yu [1609.06592]

Higgs transverse momentum

- Additional emissions probe the structure of the loop in $gg \to h+jets$
- The loop has a chirality suppression but ...
- The charm is special \rightarrow non-Sudakov double logs dynamically enhance its contribution
- The p_T spectra of the Higgs and the jet have been measured by ATLAS & CMS

See also: [Soreq, Zhu, & Zupan: 1606.09621] for similar work on the u and d yukawas

Contributions and their scaling

- Many contributions with different scaling in the $m_Q \lesssim p_T \lesssim m_h$ region
- The quark initiated contribution dominates for $\kappa_Q \gg 1$ [Soreq, Zhu, & Zupan: 1606.09621]
- Normalized distributions in this regime are sensitive to light d.o.f. but heavy new physics can affect the tail

[Banfi, Martin, Sanz: 1308.4771]

[Buschmann, Goncalves, Kuttimalai, Schonherr, Krauss, Plehn: 1410.5806] [Buschmann, Englert, Goncalves, Plehn, Spannowsky: 1405.7651] + others

Contributions and their scaling

$$\alpha_s^3 y_c m_c \ln^2 \left(\frac{p_T^2}{m_c^2} \right)$$

chirality flip

from charm PDF [Sullivan, Nadolsky: hep-ph/0111358]

extra powers of α_s

Contributions to spectrum @ 8 TeV

Normalised distributions @ 8 TeV

 $\mathcal{O}(1)$ deviations in $\kappa_c \rightarrow \sim \text{few \%}$ effect on the shape

Results for $p_{\rm T,h}$

Measured distribution

CMS: 1812.06504

First generation Yukawas

See also Felix Yu [1609.06592] for W^{\pm} charge asymmetry sensitive to $\mathcal{O}(5)$ deviations in $\bar{\kappa}_{u,d,s}$ at 14 TeV w/3 ab⁻¹

 $A = (\sigma(W^+h) - \sigma(W^-h))/(\sigma(W^+h) + \sigma(W^-h))$

LHCb projections for HL-LHC

LHCb Upgrade II: constraints on Kc

projections taken from talk by Mike Williams

Slide from Uli Haisch talk at Elba 2017 Based on bounds from M. Williams' talk

Summary

- Measuring light quark Yukawas crucial to understand mass generation mechanism in SM
- Higgs p_T distribution is sensitive to modified charm Yukawa, constraints at HL-LHC on modification of y_c of O(few) and on $y_s/y_b^{\rm SM} < 0.5$
- LHCb upgrade II projection $abs(\kappa_c) < 2.2$ and ILC O(10%)
- VH production at LHCb $\operatorname{abs}(\kappa_c) < 2-3$
- Other ideas: strange tagging? Proposal for future e+eusing charged Kaon reco. – can something similar be done at LHC? Duarte-Campderros, Perez, Schlaffer, Soffer [Perez talk at 1st FCC physics workshop and Schaffer talk at CLIC physics]

Thank you!

Parametrization

In the SM, $\kappa_q = 1$ while $\tilde{\kappa}_q = \kappa_{qq'} = \tilde{\kappa}_{qq'} = 0$

Important def'ns:
$$\kappa_i = \frac{y_i}{y_i^{\text{SM}}}, \qquad \bar{\kappa}_i = \frac{y_i}{y_b^{\text{SM}}}$$

For lepton Yukawas, see, e.g.:

Dery, Efrati, Nir, Soreq, & Susic [arXiv:1408.1371]; Dery, Efrati, Hiller, Hochberg, & Nir [arXiv:1304.6727]; Dery, Efrati, Hochberg, & Nir [arXiv:1302.3229]

Yukawa modifications in flavor models

$[{\rm FB},$ Brod, Uttayarat, Zupan: 1504.04022] – see also CERN YR4 Chap. IV.6 [1610.07922] + references therein for the specific models

Model	κ_t	$\kappa_{c(u)}/\kappa_t$	$ ilde{\kappa}_t/\kappa_t$	$\tilde{\kappa}_{c(u)}/\kappa_t$
SM	1	1	0	0
MFV	$1 + \frac{\operatorname{Re}(a_u v^2 + 2b_u m_t^2)}{\Lambda^2}$	$1 - \frac{2\operatorname{Re}(b_u)m_t^2}{\Lambda^2}$	$\frac{\mathrm{Im}(a_u v^2 + 2b_u m_t^2)}{\Lambda^2}$	$\frac{\text{Im}(a_u v^2)}{\Lambda^2}$
NFC	$V_{hu} v / v_u$	1	0	0
MSSM	$\cos \alpha / \sin \beta$	1	0	0
FN	$1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)$	$1 + O\left(\frac{v^2}{\Lambda^2}\right)$	$\mathcal{O}\left(rac{v^2}{\Lambda^2} ight)$	$\mathcal{O}\left(rac{v^2}{\Lambda^2} ight)$
GL2	$\cos \alpha / \sin \beta$	$\simeq 3(7)$	0	0
RS	$1 - \mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$\mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$\mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$
pNGB	$1 + \mathcal{O}\left(\frac{v^2}{f^2}\right) + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v^2}{M_*^2}\right)$	$1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v^2}{M_*^2}\right)$	$\mathcal{O}\left(y_*^2\lambda^2\frac{v^2}{M_*^2}\right)$	$\mathcal{O}\left(y_*^2\lambda^2\frac{v^2}{M_*^2}\right)$

- Generally, modifications $\sim v^2/\Lambda^2 \ll \mathcal{O}(1)$
- Exception: GL2 (modified GL) where

$$\mathcal{L}_{\text{yuk}} = c_{ij}^f \left(\frac{H_1^{\dagger}H_1}{M^2}\right)^{n_{ij}^f} \bar{F}_L^i f_R^j H_{1,2}$$

[Giudice, Lebedev: 0804.1753] [FB, Brod, Uttayarat, Zupan: 1504.04022] [Carena, Gemmler, Bauer: 1506.01719, 1512.03458]

Quark mass effects

- Exact mass dependence only known at L.O. [Ellis, Hinchliffe, Soldate, and van der Bij: Nuc.Phys. B297 (1988)] [Baur and Glover: Nuc.Phys. B339 (1990)]
 L.O. differential distributions include non-factorizing terms ~ ln²(p²_⊥/m²_Q) [Mantler, Wiesemann [1210.8263], [Banfi, Monni, and Zanderighi: 1 [Grazzini and Sargsyan 1306.4581]
 These ln² terms do not wist for n < m
- These \ln^2 terms do not exist for $p_T < m_Q$
- Recent progress in the direction of NLO, NLL
 - \rightarrow Soft double Logs resummed in the abelian limit [Melnikov, Penin: 1602.09020]
 - \rightarrow Two loop virtual corrections in the $m_Q \rightarrow 0$ limit [Melnikov, Tancredi, Wever: 1610.03747 and 1702.0