NP searches in ττ, μμ, τν tails (Z' & W' searches) at ATLAS & CMS

Y. Takahashi (Zurich) On behalf of ATLAS & CMS Collaboration

In this talk

• I will *not* just review recent Z', W' searches, but try to put them in the context of B-physics anomalies (including theorist's plot as well)

- "Target analysis" depends on if we aim for
 - Combined explanation of R(K^[*]) and R(D^[*])
 - Independent explanation
 - \rightarrow I split my talk into 2 parts

Combined explanation: Target signature $(Z' \rightarrow \tau\tau)$ Extra SU(2)_L doublet seems to be a good solution

Note: you need some trick, to achieve $M^{NP}(b \rightarrow s\mu\mu) << M^{NP}(b \rightarrow c\tau\nu)$

Combined explanation: Target signature $(Z' \rightarrow \tau\tau)$ Extra SU(2)_L doublet seems to be a good solution $b \rightarrow c \qquad b \rightarrow f \qquad s$

V

h

SU(2)

Ζ'

Note: you need some trick, to achieve $M^{NP}(b \rightarrow s\mu\mu) << M^{NP}(b \rightarrow c\tau\nu)$

If you assume CKM like coupling, we should expect huge enhancement due to no CKM suppression $(1/|V_{cb}|^2 \sim 600)$ \rightarrow We should look at (bb \rightarrow) Z' $\rightarrow \tau\tau$ U

Z' → ττ search (ATLAS, 35.9/fb) JHEP 01 (2018) 055

Note: It is not necessary to assume Z' coupling to light-flavour quarks

35% τ → **ι**νν (**l** = e, μ): τ_{lep} 65% τ → π[±] (+nπ⁰) ν, π[±]π[∓]π[±]ν: τ_{had}

 $\tau_{lep} \tau_{had} (\sim 40\%)$

 $\tau_{had} \tau_{had} (\sim 40\%)$

- 2 high pT τ 's
- Back-to-back
 - (Δφ > 2.7 rad)
- Opposite-sign

/16

Note: It is not necessary to assume Z' coupling to light-flavour quarks

35% τ → **Ι**νν (**l** = e, μ): τ_{lep} 65% τ → π[±] (+nπ⁰) ν, π[±]π[∓]π[±]ν: τ_{had}

 $\tau_{lep} \tau_{had} (\sim 40\%)$

Thad Thad (~40%)

- 2 high pT τ 's
- Back-to-back
 - (Δφ > 2.7 rad)
- Opposite-sign

Good BG rejection but low acceptance Worse BG rejection but good acceptance ⁺/16

Note: It is not necessary to assume Z' coupling to light-flavour quarks

35% τ → |**νν** (l = e, µ): τ_{lep} 65% τ → $π^{\pm}$ (+ $nπ^{0}$) ν, $π^{\pm}π^{\mp}π^{\pm}ν$: τ_{had}

 $\tau_{lep} \tau_{had} (\sim 40\%)$

- 2 high pT τ 's
- Back-to-back •
 - $(\Delta \phi > 2.7 \text{ rad})$
- **Opposite-sign**

Good BG rejection but low acceptance Worse BG rejection but good acceptance

Strong in low mass (where BG is big)

Strong in high mass (where BG is low)

/16

Upper limit on $\sigma \mathbf{X} \mathbf{Br}$

Put this into the context of B-anom.

→ We should recast this result,
 assuming minimum coupling
 (e.g. Z' predominantly couples to b and
 Ts) → Reduced cross-section

We should challenge wide resonance

6 /16

e.g.) di-jet resonance search

JHEP 08 (2018) 130

e.g.) di-jet resonance search

JHEP 08 (2018) 130

One can look at rapidity separation between jets (width independent)

⁷/16

e.g.) di-jet resonance search

JHEP 08 (2018) 130

Narrow resonance

Wide resonance

One can look at rapidity separation between jets (width independent) 7 /16

•••

e.g.) di-jet resonance search

JHEP 08 (2018) 130

Narrow resonance

Wide resonance

One can look at rapidity separation between jets (width independent)

Do this using $\tau\tau$ final state

7 /16

Independent explanation ^{*/16}

* Combined explanation using $SU(2)_{L}$ doublet seems not work * One of the R(K) or R(D) anomalies might be just false alarm !

Independent explanation ^{*/16}

* Combined explanation using $SU(2)_{L}$ doublet seems not work * One of the R(K) or R(D) anomalies might be just false alarm !

Q. Experimentally, where to search for (e.g. W')?

$$\propto g_{bc}g_{\tau\nu}/m_{W^{\prime}}^{2}$$

Whatever combination of mw[,] and coupling (g) that explains B-anomalies should be searched for

Independent explanation ^{*/16}

* Combined explanation using $SU(2)_{L}$ doublet seems not work * One of the R(K) or R(D) anomalies might be just false alarm !

b

Q. Experimentally, where to search for (e.g. W')?

@ ATLAS, CMS

 \mathcal{V}_{τ}

Balanced in p_T and back-to-back ($\Delta \phi > 2.4$ rad)

PLB 792 (2019) 107 (CMS) PRL 120 (2018) 161802 (ATLAS) W' $\rightarrow \tau \nu$ search (CMS, 35.9/fb)

Balanced in p_T and back-to-back ($\Delta \phi > 2.4$ rad)

$$m_T = \sqrt{2p_T^{\tau} E_T^{miss} (1 - \cos \Delta \phi(\overrightarrow{p_T^{\tau}}, \overrightarrow{p_T^{miss}}))}$$

PLB 792 (2019) 107 (CMS) PRL 120 (2018) 161802 (ATLAS) In the context of B-anomaly, recast this result, assuming W' only couples to bc and $\tau \nu$

W' highly constrained (except for non-perturbative region)

Search for Z'

Q. Experimentally, where to search for ?

 \rightarrow any combination of $m_{Z'}$, g that can explain <u>B-anom</u>. Should be searched for

Note: δ_{bs} should be kept small not to conflict with Bs mixing through $bs \rightarrow Z' \rightarrow bs$

 $\delta_{bs}g_{b}$

$$\propto \delta_{bs} g_b g_\mu / m_{Z'}^2$$

Generic Z' search

¹¹/16

- 2 same-flavour leptons
- Opposite-sign for µµ
 (no requirement for ee)

Generic Z' search

- 2 same-flavour leptons
- Opposite-sign for µµ
 (no requirement for ee)

11/16

Generic Z' search

ATLAS ee $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 2×10³ 3×10³ mee [GeV]

m_{μμ} [GeV]

11/16

	Lower limit on m _{Z'}		
	width	obs.	exp.
Ζ' ψ	0.5%	4.5 TeV	4.5 TeV
Ζ'χ	1.2%	4.8	4.8
Z'SSM	3.0%	5.1	5.1

¹²/16

- We have to assume minimum coupling scenario
- Starting from minimum Lagrangian

 $\mathscr{L} \supset Z'^{\mu} [g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu}_{\mu} \gamma^{\mu} P_L \nu_{\mu} + g_b \sum_{q=t,b} \bar{q} \gamma^{\mu} P_L q + (g_b \delta_{bs} \bar{s} \gamma^{\mu} P_L b)]$

- We have to assume minimum coupling scenario
- Starting from minimum Lagrangian

 $\mathscr{L} \supset Z'^{\mu} [g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu}_{\mu} \gamma^{\mu} P_{L} \nu_{\mu} + g_{b} \sum_{q=t,b} \bar{q} \gamma^{\mu} P_{L} q + (g_{b} \delta_{bs} \bar{s} \gamma^{\mu} P_{L} b)]$

 $\begin{array}{c}
\mu,\nu_{\mu} \\
g_{\mu} \\
\chi,\nu_{\mu} \\
\end{array}$

- We have to assume minimum coupling scenario
- Starting from minimum Lagrangian

¹³/16

- We have to assume minimum coupling scenario
- Starting from minimum Lagrangian

¹³/16

- We have to assume minimum coupling scenario
- Starting from minimum Lagrangian

¹³/16

Flavoured Z'

Search for Z' that only couples to $\boldsymbol{\mu}$

- Require 4 muons with $m(4\mu) \sim m_Z$
- Search for the "bump" in m(µµ)

Small coupling to muon \rightarrow large δ_{bs} to explain B-anom. \rightarrow conflict with Bs mixing

Experimental challenges - boosted object ¹⁵/16 tagging

- Search for high-mass $Z' \rightarrow t\bar{t}$, $b\bar{b}$ is motivated
- As the Z' becomes heavier, t/b-quark carry more p_T , which makes them difficult to identify

arXiv:1902.10077 (ATLAS) EPJC 78 (2018) 565 (ATLAS) JHEP 07 (2017) 001 (CMS)

b-quark

High p_T b-jet can travel a lot, and one cannot reconstruct secondary vertex

Universität

Zürich^{∪z}

Summary

- Given the B-physics anomalies, we started dedicated searches
 - assume minimum coupling (i.e. limit production mode/final state)
 - Search for wide resonance

We need new idea, new final states

(rather than just relying on increased luminosity)

arXiv: 1812.07831

¹⁶/16

¹⁷/16

NP scale (Λ), indicated by anom. might be within reach by ATLAS/CMS

¹⁸/16

There are other reasons !

 \rightarrow Related to S/B

Indirect measurements (B-factory)

S/B ratio is enhanced

Direct measurements (ATLAS & CMS)

²⁰/16

