Benchmark values for net proton number fluctuations

Boris Tomášik

Univerzita Mateja Bela, Banská Bystrica, Slovakia and FNSPE, České vysoké učení technické, Praha, Czech Republic

boris.tomasik@umb.sk

collaborators: Ivan Melo, Lukáš Lafférs, Marcus Bleicher

Critical Point and the Onset of Deconfinement Mon Repos, Corfu

24.9.2018

Boris Tomášik (Univerzita Mateja Bela)

Motivation: net proton number fluctuations

- \bullet baryon number susceptibilities χ^{B}_{i} calculated on the lattice
- enhancement of susceptibilities near the critical point
- susceptibilities are measurable as cumulants of baryon number distribution
- B-number not measurable, since no neutrons are measured
- Conflict!
 - susceptibilities are calculated in grand-canonical ensemble
 - cumulants are measured in real collisions which conserve *B*, have limited acceptance, and measure (almost) only protons
- many papers devoted to these subjects
- 100% detector efficiency assumed in this work
- New in this work:
 - rapidity distribution of wounded vs. produced (anti)baryons
 - isospin memory in wounded nucleons

Our approach: Monte Carlo simulation

- baryon number is conserved
- only protons and neutrons (and their antiparticles) in the simulations
- only a (fluctuating) part of incoming nucleons participate
- isospin of individual wounded nucleons is kept
- wounded nucleons have double-Gaussian rapidity distribution protons from this source fluctuate due to:
 - fluctuations of number of wounded nucleons
 - random number of protons out of wounded nucleons, track isospin
 - limited acceptance out of the whole rapidity distribution
- additionally produced BB-pairs flat in rapidity (net) protons from this source fluctuate due to:
 - Poissonian fluctuations of $B\bar{B}$ pairs with mean proportional to N_{wound}
 - random number of protons and antiprotons (p=1/2)
 - limited acceptance out of the whole rapidity distribution

\Rightarrow composition wounded/produced protons depends on

energy, centrality, and rapidity window

Rapidity distribution of wounded nucleons

$$\frac{dN_w}{dy}(y) = \frac{N_w}{2\sqrt{2\pi\sigma_y^2}} \left\{ \exp\left(-\frac{(y-y_m)^2}{2\sigma_y^2}\right) + \exp\left(-\frac{(y+y_m)^2}{2\sigma_y^2}\right) \right\}$$

Parameter settings:

- *σ_y* = 0.8
- obtain y_m from

$$N_{p-\bar{p}} = \frac{Z}{A} \int_{-y_b}^{y_b} \frac{dN_w}{dy} \, dy$$

where

$$N_{p-\bar{p}}$$
 in $|y| < y_b = 0.25$
is taken from STAR:
PRC**79** (2009) 034909,
PRC**96** (2017) 044904

Boris Tomášik (Univerzita Mateja Bela)

Rapidity distribution of produced $N\bar{N}$ pairs

$$\frac{dN_{B\bar{B}}}{dy} = N_{B\bar{B}} \frac{C}{1 + \exp\left(\frac{|y| - y_m}{a}\right)}$$

Parameter settings:

•
$$C = (2a \ln (e^{y_m/a} + 1))^{-1}$$

•
$$a = \sigma_y/10$$

 ${\ensuremath{\bullet}}$ obtain $N_{B\bar{B}}$ from

$$N_{\bar{p}} = \frac{1}{2} \int_{-y_b}^{y_b} \frac{dN_{B\bar{B}}}{dy} \, dy$$

where

 $N_{\bar{p}}$ in $|y| < y_b = 0.25$ is taken from STAR: PRC**79** (2009) 034909, PRC**96** (2017) 044904

Other model faetures

Isospin determination

- Wounded nucleons remember their isospin. This feature can be turned off and on.
- Wounded proton number thus follows hypergeometric distribution.
- A produced nucleon becomes proton with probability 1/2.

Glauber Monte Carlo

- we use GLISSANDO 2
 [M. Rybczyński *et al.*, Comp. Phys. Commun. 185 (2014) 1759]
- centrality is determined based on deposited energy measure (analogically to experiment)

Definitions

Central moments

$$\mu_1 = \langle n \rangle = \bar{n}$$

$$\mu_2 = \langle (n - \bar{n})^2 \rangle = \sigma^2$$

$$\mu_3 = \langle (n - \bar{n})^3 \rangle$$

$$\mu_4 = \langle (n - \bar{n})^4 \rangle$$

Scaled skewness and kurtosis

$$S\sigma = \frac{\mu_3}{\mu_2} = \frac{\chi_3}{\chi_2}$$
$$\kappa\sigma^2 = \frac{\mu_4}{\mu_2} - 3\mu_2 = \frac{\chi_4}{\chi_2}$$
$$\frac{\kappa\sigma^4}{\bar{n}} = \frac{\mu_4 - 3\mu_2^2}{\mu_1} = \frac{\chi_4}{\chi_1}$$

Exercise: Baryon number conservation

Moments of baryon number distribution around midrapidity.

 $N_w=$ 338, $N_{Bar{B}}=$ 16.94, $y_m=$ 1.019, 5 imes 10 7 events

Net proton number: dependence on rapidity window width

Moments of net proton number distribution around midrapidity.

 $N_w = 338, \; N_{Bar{B}} = 16.94, \; y_m = 1.019, \; 2 imes 10^7 \; {
m events}$

Dependence on Δy : fixed N_w vs. Glauber MC

Moments of $p - \bar{p}$ distribution around y = 0

 $N_w=338,~N_{B\bar{B}}=16.94,~y_m=1.019,~2\times10^7$ events, Glauber MC: 1.2×10^6 events

Boris Tomášik (Univerzita Mateja Bela)

Dependence on Δy : fixed N_w vs. Glauber MC

Moments of $p - \bar{p}$ distribution around y = 0: zoom into detector coverage

 $N_w=338,~N_{B\bar{B}}=16.94,~y_m=1.019,~2\times10^7$ events, Glauber MC: 1.2×10^6 events

Boris Tomášik (Univerzita Mateja Bela)

Net proton number: dependence on rapidity

Moments of $p - \bar{p}$ distribution for $\Delta y = 0.5$

 $N_w=338,~N_{B\bar{B}}=16.94,~y_m=1.019,~2\times10^7$ events, Glauber MC: 1.2×10^6 events

Boris Tomášik (Univerzita Mateja Bela)

Net proton number: dependence on rapidity

Moments of $p - \bar{p}$ distribution for $\Delta y = 0.5$: zoom into detector coverage

 $N_w=338,~N_{B\bar{B}}=16.94,~y_m=1.019,~2\times10^7$ events, Glauber MC: 1.2×10^6 events

Boris Tomášik (Univerzita Mateja Bela)

Dependence on rapidity for different collision energies

Fixed $N_w = 338$, $N_{B\bar{B}} = 16.94$, $y_m = 1.019$, 2×10^7 events,

Glauber MC, 1.2×10^6 events

Net proton number: dependence on centrality

 $\sqrt{s_{NN}}=19.6~{\rm GeV}$: $y_m=1.019,~N_{B\bar{B}}/N_w=0.050$ Statistics: 2×10^7 for fixed N_w , $\sim5\times10^5$ for Glauber MC

 $S\sigma$ and $\kappa\sigma^2$ are lowered towards more central events of wounded protons nucleons remember their isospin.

Net proton number: dependence on collision energy

rapidity bin $\Delta y = 0.5$ around y = 0Statistics: 2×10^7 events for fixed N_w , 1.2×10^6 events for Glauber MC

The importance of produced $B\bar{B}$ pairs grows with increasing energy.

Boris Tomášik (Univerzita Mateja Bela)

Conclusions

A "minimal" model for proton number fluctuations:

- rapidity dependent composition through two components: wounded nucleons and produced BB pairs
- possible "isospin memory" of wounded nucleons
- Glauber MC (GLISSANDO 2)

Findings:

- \bullet rapidity dependence of $\kappa\sigma^2$ with $\sqrt{s_{NN}}\text{-dependent}$ minimum
- \bullet isospin effect: decrease of $S\sigma$ and $\kappa\sigma^2$ with higher centrality
- \bullet baryon number conservation: decrease of $S\sigma$ and $\kappa\sigma^2$ with lower energies