IDENTIFIED PARTICLE NUMBER FLUCTUATIONS FROM ALICE

AT THE CERN LHC

Anar Rustamov

GSI/EMMI, Universität Heidelberg, NNRC /BSU

for the ALICE Collaboration

GSI

FMM

- Why fluctuations?
- Net-proton fluctuations
- Non-dynamical contributions
- Net-Lambda fluctuations
- Future possibilities
- Summary

Why fluctuations?

fingerprints of criticality for $m_{u,d} = o$ survive at crossover with $m_{u,d} \neq o$

A. Bazavov et al., Phys.Rev. D85 (2012) 054503

- To probe the structure of strongly interacting matter
 - Locate phase boundaries
 - Search for critical phenomena
 - ...

E-by-E fluctuations are predicted within Grand Canonical Ensemble

probing the response of the system to external perturbations

Criticality at crossover

ALICE, PLB 726 (2013) 610 A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, 321–330 (2018)

freeze-out at the phase boundary $T_c^{LQCD} = 156.5 \pm 1.5 MeV$ $T_{fo}^{ALICE} = 156.5 \pm 3 MeV$

y axis: 9 orders of magnitude; works in the energy range spanning by 3 orders of magnitude

conservation of the net-baryon number

P. Braun-Munzinger, A. R., J. Stachel; QM18, arXiv:1807.08927

fluctuations of conserved quantities e.g., $N_B - N_{\overline{B}}$

What fluctuates?

• fluctuations of net-baryons appear only inside finite acceptance

P. Braun-Munzinger, A. R., J. Stachel; QM18, arXiv:1807.08927

Net-particle cumulants, definitions

$$X = N_B - N_{\overline{B}}$$

 r^{th} central moment:

$$\mu_r \equiv \langle (X - \langle X \rangle)^r \rangle = \sum_X (X - \langle X \rangle)^r P(X)$$

first four cumulants

$$\kappa_1 = \langle X \rangle, \quad \kappa_2 = \mu_2, \quad \kappa_3 = \mu_3, \quad \kappa_4 = \mu_4 - 3\mu_2^2$$

Uncorrelated Poisson limit: $\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$

Net-Baryons → Skellam

$$\kappa_n = \langle N_B \rangle + (-1)^n \langle N_{\overline{B}} \rangle$$

$$\frac{\kappa_{2n+1}}{\kappa_{2k}} = \tanh\left(\frac{\mu}{T}\right) = \frac{\langle N_B \rangle - \langle N_{\overline{B}} \rangle}{\langle N_B \rangle + \langle N_{\overline{B}} \rangle}$$

Baselines from LQCD

valid only for a fixed system volume

V. Skokov, B. Friman, and K. Redlich, Phys.Rev. C88 (2013) 034911 P. Braun-Munzinger, A. R., J. Stachel, arXiv:1612.00702, NPA 960 (2017) 114

- In experiments
 - Volume (participants) fluctuates from E-to-E
 - Centrality selection is crucial
 - Global conservation laws are important
 - Acceptance selection is crucial

higher order cumulants are more sensitive to the critical behavior

G. A. Almasi, B. Friman, K. Redlich, P.R.D96 (2017) 1, 014027.

Acceptance selection

- $\Delta \eta > \Delta \eta_{thr}$: conservations laws dominate
- $\Delta \eta < \Delta \eta_{thr}$: dynamical fluctuations may disappear

The strategy

- Perform analysis for $\Delta \eta > \Delta \eta_{thr}$
- Correct for non-dynamical contributions
 - Conservation laws
 - Volume fluctuations
- Compare to theory

P. Braun-Munzinger, A. R., J. Stachel, NPA 960 (2017) 114

The ALICE apparatus

Particle Identification

Analysis Techniques

single event example : 3 protons, 2 kaons

traditional approach

Identity method approach

$$w_p(x_i) = \frac{\rho_p(x_i)}{\rho_p(x_i) + \rho_K(x_i)}$$

$$W_p = \sum_{i=1}^5 w_p \left(x_i \right)$$

$$w_{K}(x_{i}) = \frac{\rho_{K}(x_{i})}{\rho_{p}(x_{i}) + \rho_{K}(x_{i})} \quad W_{K} = \sum_{i=1}^{5} w_{K}(x_{i})$$

measurement in region I count as proton measurement in region II count as kaon

Analysis Techniques

single event example : 3 protons, 2 kaons

traditional approach

Identity method approach

Use additional detector information Or reject a given phase space bin

(challenge: efficiency correction)

$$w_p(x_i) = \frac{\rho_p(x_i)}{\rho_p(x_i) + \rho_K(x_i)} \qquad W$$

$$W_p = \sum_{i=1}^5 w_p(x_i)$$

$$w_{K}(x_{i}) = \frac{\rho_{K}(x_{i})}{\rho_{p}(x_{i}) + \rho_{K}(x_{i})} \quad W_{K} = \sum_{i=1}^{5} w_{K}(x_{i})$$

 $\stackrel{\rightarrow}{\langle W}$

The Identity Method

NET-PROTON FLUCTUATIONS

• At LHC energies net-proton is a reasonable proxy for net-baryon

M. Kitazawa, and M. Asakawa, Phys. Rev. C86 (2012) 024904

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Net-protons, protons, antiprotons

Net-protons, protons, antiprotons

Net-protons, protons, antiprotons

Modeling participant fluctuations

- N_w fluctuates with MC Glauber initial conditions
- Each source is treated Grand Canonically
- Mean proton multiplicities $\langle p \rangle$, $\langle \overline{p} \rangle$ from this analysis
- Centrality selection like in experimental data

ALICE Phys.Rev. C88 (2013) no.4, 044909

P. Braun-Munzinger, A. R., J. Stachel, arXiv:1612.00702, NPA 960 (2017) 114

Modeling participant fluctuations

Modeling participant fluctuations

Contribution from global baryon number conservation

The deviation from Skellam is due to global baryon number conservation

Acceptance and centrality dependence

Effect of global baryon number conservation is more significant in peripheral collisions

Net-pions and Net-kaons

resonance pion and kaon production is likely to explain the measured trend

Warning: Skellam is not a proper baseline for net-pions and net-kaons

Net-protons, Higher cumulants

ALICE, QM18, arXiv:1807.06780

measured with the traditional approach in a rather small p_{T} acceptance

Both ALICE and STAR attempting to improve p_{T} acceptance

NET-LAMBDA FLUCTUATIONS

To study correlated baryon-strangeness fluctuations
To improve understanding of net-baryon baseline

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Identity Method for Λ

similar to the Identity method for 2 particle species (signal and background in this case)

ALICE, QM18

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

27

Similar trend as for net-protons

Future Possibilities

Run3/Run4 will provide 100 times more statistics (several billion events)

One of the ultimate goals is to explore higher order cumulants

Predictions from LQCD

A. Bazavov et al., Phys.Rev. D95 (2017) 054504

S. Borsanyi et al., arXiv:1805.04445

Summary

- The measured second order cumulants of net-protons at ALICE are, after accounting for baryon number conservation, in agreement with the corresponding second cumulants of the Skellam distribution.
 - LQCD predicts a Skellam behavior for the second cumulants of net-baryon distributions at a pseudo-critical temperature of about 155 MeV
- The Identity Method is applied for a signal + background combination for the first time
- Net-Lambda measurements show qualitative agreement with the net-proton results
 - The deviation of κ_2 from Skellam is explained by conservation laws

The analysis of higher order cumulants in a larger acceptance is ongoing

Bonus Slides

Fluctuations in GCE

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas

Fluctuations in CE

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas $Z_{GCE}(V,T,\mu) = \sum_{N_{p}=0}^{\infty} \sum_{N_{p}=0}^{\infty} \frac{\left(\lambda_{B} z\right)^{N_{B}}}{N_{p}!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{p}}!} = e^{2z\cosh\left(\frac{\mu}{T}\right)}, \quad \lambda_{B,\overline{B}} = e^{\pm \frac{\mu}{T}} \qquad z-\text{single baryon partition function}$ Uncorrelated Poisson limit: $\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$ $\frac{\kappa_{2n+1}}{\kappa_{2k}} = \tanh\left(\frac{\mu}{T}\right) = \frac{\langle N_B \rangle - \langle N_{\overline{B}} \rangle}{\langle N_B \rangle + \langle N_{\overline{B}} \rangle}$ $\kappa_n = \langle N_B \rangle + (-1)^n \langle N_{\overline{B}} \rangle$ Net-Baryons → Skellam $Z_{CE}(V,T,B) = \sum_{N_{-}=0}^{\infty} \sum_{N_{-}=0}^{\infty} \frac{\left(\lambda_{B}z\right)^{n_{B}}}{N_{-}!} \frac{\left(\lambda_{\overline{B}}z\right)^{n_{B}}}{N_{-}!} \delta\left(N_{B}-N_{\overline{B}}-B\right) = I_{B}\left(2z\right)\Big|_{\lambda_{B}=\lambda_{\overline{B}}=1}$ • Non-Poisson single particles \rightarrow Canonical Suppression Strong correlations $\langle N_B N_{\overline{B}} \rangle \neq \langle N_B \rangle \langle N_{\overline{B}} \rangle$ ulletNet-Baryons do not fluctuate! \odot K. Redlich and L. Turko, Z. Phys. C5 (1980) 201, V.V. Begun, M. I. Gorenstein, O. S. Zozulya, PRC 72 (2005) 014902 P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich, V. Skokov, NPA 880 (2012), A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901