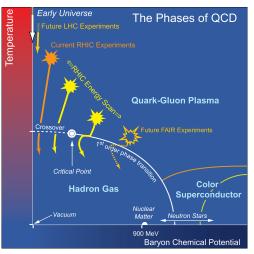
Switching it up: Parameterizing the

QCD Equation of State

Christopher J. Plumberg^{1,2} in collaboration with Thomas Welle¹ and Joseph Kapusta¹

CPOD 2018, Corfu, Greece September 24-28, 2018

¹University of Minnesota, ²Lund University



Fairly well understood:
✓ Hadronic phase
✓ Partonic phase
✓ T-axis from lattice
Not so well understood:
→ "Coexistence curve"
→ Critical end-point (CEP)?

Hadron Resonance Gas (HRG)

Three different models:

Point-particle (pt) model

$$P_{HRG}(T,\mu) = \sum_{\alpha \in \text{hadrons}} (2s_{\alpha} + 1) \int \frac{d^3p}{(2\pi)^3} \frac{p^2/(3E_{\alpha})}{e^{\beta[E_{\alpha}(p) - \mu_{\alpha}]} \pm 1} \quad (1)$$

Sum over all hadrons with $m_{lpha} < 2.6~{\rm GeV}$

Excluded-volume (exl) model

- extension to pt model
- assigns finite volume to hadrons
- \blacksquare volume proportional to hadron energy with coefficient ϵ_0
- Excluded-volume (exII) model
 - variant of exl model
 - also assigns finite volume to hadrons
 - species-dependent volume proportional to hadron mass with universal coefficient ϵ_0
- \rightarrow Free parameters: none in pt model, ϵ_0 in exI and exII models

Quark-Gluon Plasma (QGP)

■ Write^{1, 2, 3}

$$P_{QGP}(T,\mu) = \frac{8\pi^2}{45} T^4 \sum_{n=0}^{6} f_n \left(\frac{\alpha_s}{\pi}\right)^{n/2}$$
(2)

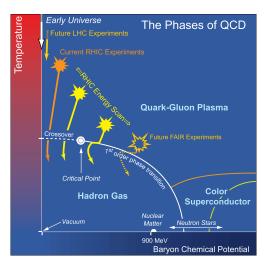
fn: functions of
$$\hat{\mu} = \mu/(6\pi T)$$
, α_s , and $\hat{M} = M/(2\pi T)$

- *M*: renormalization scale
- \blacksquare Running of α_s determined to three-loop accuracy
- C_S : chosen to eliminate Landau pole in α_s
- C_M : used to adjust renormalization scale
- ightarrow Free parameters: C_S , C_M

¹A. Vuorinen, PRD **67**, 074032 (2003)

²A. Vuorinen, PRD **68**, 054017 (2003)

³N. Haque, M. G. Mustafa and M. Strickland, PRD **87**, 105007 (2013)



Checklist: ✓ HRG phase ✓ QGP phase

Question: How do we put them together? **Answer:** A switching function

Switching function: philosophy

 $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$

Switching function S:

• $S \in [0,1]$: S = 0 (S = 1) "turns on" P_{HRG} (P_{QGP}) and "turns off" the other

Switching function: philosophy

 $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$

Switching function S:

- $S \in [0,1]$: S = 0 (S = 1) "turns on" P_{HRG} (P_{QGP}) and "turns off" the other
- $\blacksquare \ S \in C^\infty$ is infinitely differentiable
 - Let $S\in C^n$ be continuously differentiable at most n times in at least one of its arguments
 - Then $P_{\rm tot} \in C^n$ is also continuously differentiable at most n times in the same argument

 $\Rightarrow P_{tot}$ has an *n*th-order phase transition!

 $-\,$ Must have $S\in C^\infty$ in order not to artificial phase transition

Switching function: strategy

 $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$

The big idea:

- Define EoSs in distinct phases
- Define S to implement desired phase structures
- Combine to obtain full QCD EoS

Switching function: strategy

 $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$

The big idea:

- Define EoSs in distinct phases
- \blacksquare Define S to implement desired phase structures
- Combine to obtain full QCD EoS

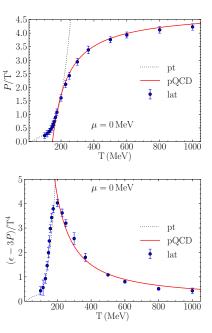
The game plan:

- $1\,$ Fix lattice observables to describe
- **2** Construct S

2a for pure crossover everywhere

- **2b** for crossover + CEP + 1^{st} -order phase transition
- 3 Choose free parameters to optimize agreement with lattice data

Step 1: Lattice observables



- Lattice data^a
 - Normalized pressure
 - Trace anomaly
- Hadronic: valid up to $T\lesssim$ 200 MeV
- Partonic: valid above $T\gtrsim 180 \text{ MeV}$
- \blacksquare Try to do matching near $T\sim$ 180-200 MeV
- ^aS. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabo, JHEP **1011**, 077 (2010).

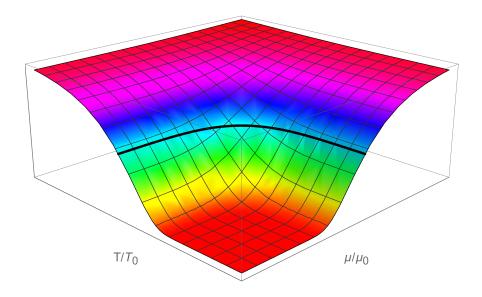
Step 2a: Crossover Switching Function

$$S(T,\mu) \equiv \exp\left[-\theta(T,\mu)\right]$$
(3)
$$\theta(T,\mu) \equiv \left[\left(\frac{T}{T_0}\right)^r + \left(\frac{\mu}{\mu_0}\right)^r\right]^{-1}$$
(4)

ightarrow Free parameters: T_0 , μ_0 , $r\in\mathbb{Z}^+$

 \Rightarrow Total free parameters: T_0 , μ_0 , r, ϵ_0 , C_S , C_M

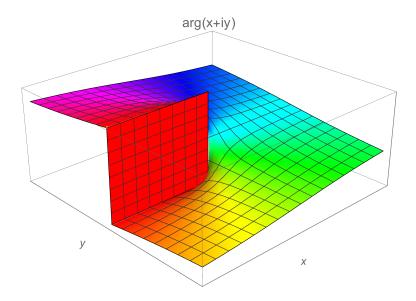
Step 2a: Crossover Switching Function



Requirements:

- $\blacksquare~S$ has a discontinuity along a curve in the complex plane
- Discontinuity terminates at a single point
- $\ \ \, {\bf S} \in C^\infty \ \, {\rm everywhere} \ \, {\rm else}$
- $S \in [0,1]$ for any point $z \in \mathbb{C}$

Natural candidate: $S(x, y) \sim \arg(x + iy)!$



Requirements:

- $\blacksquare~S$ has a discontinuity along a curve in the complex plane
- Discontinuity terminates at a single point
- $\ \ \, {\bf S} \in C^\infty \ \, {\rm everywhere} \ \, {\rm else}$
- $S \in [0,1]$ for any point $z \in \mathbb{C}$

Natural candidate: $S(x, y) \sim \arg(x + iy)!$

- ✓ Discontinuous branch cut across negative real axis
- ✓ Branch cut terminates at the origin
- ✓ Infinitely differentiable everywhere else

 ${\rm Upshot:}$ choose an appropriate conformal mapping which takes $(x,y) \to (T,\mu)$ in a reasonable way

$$S(T, \mu, \psi_c, r) = \frac{1}{2} + \frac{1}{\pi} \arg\left(\eta_1(m, t, \psi_c) + i\eta_2(m, t, r)\right)$$

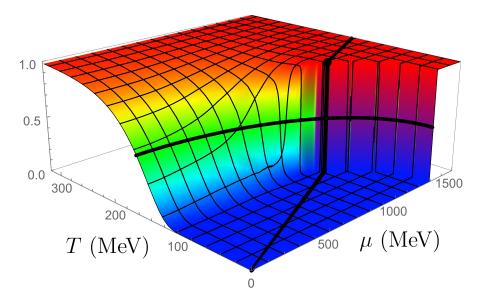
$$\eta_1(\mu, T, \psi_c) \equiv \frac{1}{2} \left[1 + \tanh\left(\frac{a\left(b - \left|\frac{\psi}{\psi_c}\right|\right)}{\left|\frac{\psi}{\psi_c}\right|\left(1 - \left|\frac{\psi}{\psi_c}\right|\right)}\right)\right],$$

$$\eta_2(\mu, T, r) \equiv \tan\left[\frac{\pi}{2^{\theta}} - \frac{\pi}{2}\right],$$

$$\theta(\mu, T, r) = \left(\frac{T^2 + \mu^2}{R^2(\psi)}\right)^{-r/2}, \quad \psi = \arctan(\mu/T),$$

$$T_{\rm co}(\mu) \equiv T_0 \left[1 - k_2 \left(\frac{\mu}{\mu_c}\right)^2 - k_4 \left(\frac{\mu}{\mu_c}\right)^4 - \cdots \right].$$

- \rightarrow Fixed parameters: $R(\psi)\text{, }T_0\text{, }k_2\text{, }a\text{, }b$
- \rightarrow Free parameters: k_4 , $r \in \mathbb{Z}^+$
- \Rightarrow Total free parameters: k_4 , r, ϵ_0 , C_S , C_M

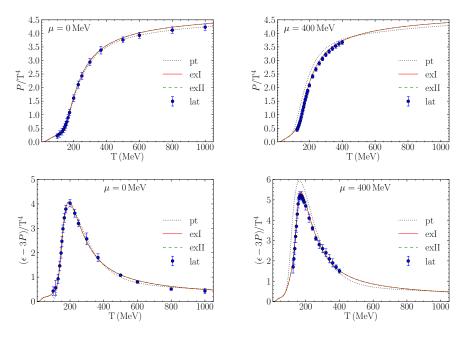


- $\checkmark\,$ Define distinct phases
 - QGP phase
 - 3 models of HRG phase

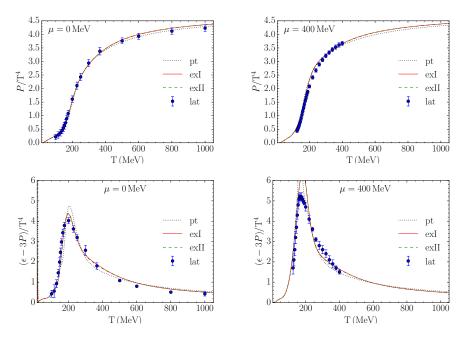
- ✓ Define distinct phases
 - QGP phase
 - 3 models of HRG phase
- $\checkmark\,$ Define switching function for phase diagram
 - Rapid crossover only
 - Rapid crossover + CEP + first-order phase transition

- ✓ Define distinct phases
 - QGP phase
 - 3 models of HRG phase
- $\checkmark\,$ Define switching function for phase diagram
 - Rapid crossover only
 - Rapid crossover + CEP + first-order phase transition
- ✓ Combine and optimize w.r.t. lattice data

Results for a Pure Crossover



Results for a Crossover and Critical Point



Conclusions

What have we done?

- Constructed switching functions for rapid crossover between QGP and HRG phases
- Both with⁴ and without⁵ CEP and first-order phase transition
- Obtained phenomenological EoS for various T_c

What's left?

- \blacksquare Improve description of QGP and HRG phases in small-T, large- μ regime
- Include critical exponents at CEP (currently mean-field only)⁶
- Extend to include other phase structures^{7,8}

- ⁶J. I. Kapusta, Phys. Rev. C **81**, 055201 (2010)
- ⁷M. G. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B **422**, 247 (1998)
- ⁸J. Pochodzalla *et al.*, Phys. Rev. Lett. **75**, 1040 (1995)

⁴M. Albright, J. Kapusta and C. Young, Phys. Rev. C **90**, 024915 (2014) ⁵CP, T. Welle, and J. Kapusta, forthcoming

Conclusions

What have we done?

- Constructed switching functions for rapid crossover between QGP and HRG phases
- Both with⁴ and without⁵ CEP and first-order phase transition
- Obtained phenomenological EoS for various T_c

What's left?

- \blacksquare Improve description of QGP and HRG phases in small-T, large- μ regime
- Include critical exponents at CEP (currently mean-field only)⁶
- Extend to include other phase structures^{7,8}

Thanks!

⁴M. Albright, J. Kapusta and C. Young, Phys. Rev. C 90, 024915 (2014)
 ⁵CP, T. Welle, and J. Kapusta, forthcoming

- ⁶J. I. Kapusta, Phys. Rev. C **81**, 055201 (2010)
- ⁷M. G. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B **422**, 247 (1998)
- ⁸J. Pochodzalla *et al.*, Phys. Rev. Lett. **75**, 1040 (1995)

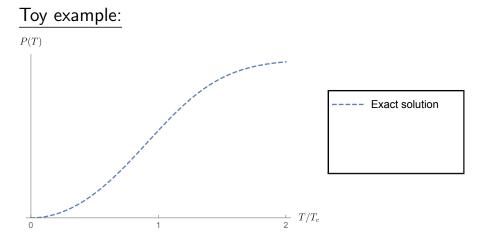
Backup slides

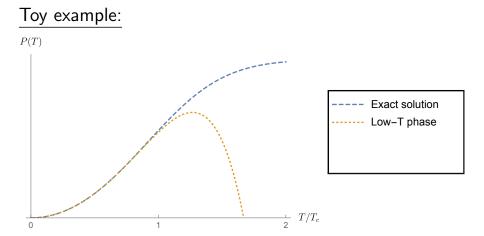
Switching function: philosophy

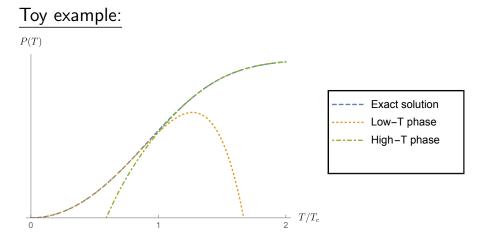
Why do we need a switching function?

 \rightarrow Let $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$ Switching function S:

• $S \in [0,1]$: S = 0 (S = 1) "turns on" P_{HRG} (P_{QGP}) and "turns off" the other

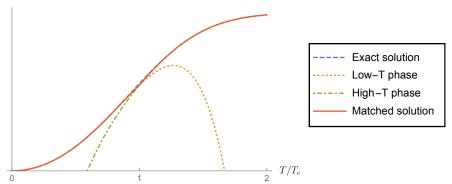






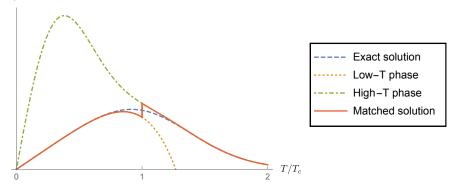
Toy example:

P(T)



Toy example:

dP/dT



Switching function: philosophy

Why do we need a switching function?

 \rightarrow Let $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$ Switching function S:

- $S \in [0,1]$: S = 0 (S = 1) "turns on" P_{HRG} (P_{QGP}) and "turns off" the other
- $S \in C^{\infty}$ is infinitely differentiable
 - Let $S\in C^n$ be continuously differentiable at most n times in at least one of its arguments
 - Then $P_{\rm tot} \in C^n$ is also continuously differentiable at most n times in the same argument

 $\Rightarrow P_{tot}$ has an *n*th-order phase transition!

 $-\;$ Must have $S\in C^\infty$ in order not to artificial phase transition

Switching function: philosophy

Why do we need a switching function?

 \rightarrow Let $P_{\text{tot}}(T,\mu) = S(T,\mu) P_{QGP}(T,\mu) + (1 - S(T,\mu)) P_{HRG}(T,\mu)$ Switching function S:

- $S \in [0,1]$: S = 0 (S = 1) "turns on" P_{HRG} (P_{QGP}) and "turns off" the other
- $S \in C^{\infty}$ is infinitely differentiable
 - Let $S\in C^n$ be continuously differentiable at most n times in at least one of its arguments
 - Then $P_{\rm tot} \in C^n$ is also continuously differentiable at most n times in the same argument

 $\Rightarrow P_{tot}$ has an *n*th-order phase transition!

 $-\;$ Must have $S\in C^\infty$ in order not to artificial phase transition

The big idea:

- Define EoSs in distinct phases
- $\hfill\blacksquare$ Define S to implement desired phase structures
- Combine to obtain full QCD EoS