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QCD phase diagram in the Chiral limit
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Nature of dense QCD phase diagram is not yet
conclusive from Lattice QCD calculations.

However the crossover nature is verified and
the search for CEP with physical pion mass is
ongoing. [Plenary by S. Mukherjee]
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1500

Nature of dense QCD phase diagram is not yet
conclusive from Lattice QCD calculations.

However the crossover nature is verified and
the search for CEP with physical pion mass is
ongoing. [Plenary by S. Mukherjee]

Crossover is related to the chiral symmetry
restoration, can be realized from the fact that in
the chiral limit chiral symmetry is restored via a
phase transition.

Work from Pisarski and Wilczek suggests that
at high temperature (u=0) the chiral transition
(N,=2+1) belongs to the O(4) universality class if
U(1)a effectively restored after SUL(2)XSURg(2)
restoration.
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1500

Nature of dense QCD phase diagram is not yet
conclusive from Lattice QCD calculations.

However the crossover nature is verified and
the search for CEP with physical pion mass is
ongoing. [Plenary by S. Mukherjee]

Crossover is related to the chiral symmetry
restoration, can be realized from the fact that in
the chiral limit chiral symmetry is restored via a
phase transition.

Work from Pisarski and Wilczek suggests that
at high temperature (u=0) the chiral transition
(N,=2+1) belongs to the O(4) universality class if
U(1)a effectively restored after SUL(2)XSURg(2)
restoration.

Although, if U(1)a restoration happens
alongside the flavour chiral symmetry
restoration then there is a possibility of a
fluctuation induced 1st order transition.
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Nature of dense QCD phase diagram is not yet
conclusive from Lattice QCD calculations.

However the crossover nature is verified and
the search for CEP with physical pion mass is
ongoing. [Plenary by S. Mukherjee]

Crossover is related to the chiral symmetry
restoration, can be realized from the fact that in
the chiral limit chiral symmetry is restored via a
phase transition.

Work from Pisarski and Wilczek suggests that
at high temperature (u=0) the chiral transition
(N,=2+1) belongs to the O(4) universality class if
U(1)a effectively restored after SUL(2)XSURg(2)
restoration.

Although, if U(1)a restoration happens
alongside the flavour chiral symmetry
restoration then there is a possibility of a
fluctuation induced 1st order transition.

Order of the phase transition in the chiral limit
IS also of relevance for studies of fluctuations
at the LHC.[talk by A. Rustamov]
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QCD phase diagram in the Chiral limit
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Chiral transition for zero chemical

potential with HISQ
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Chiral transition for zero chemical

potential with HISQ
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Ny=3 : 1st order phase transition
ruled out for 230 MeV > m; >80
MeV. Bound on critical pion

mass is given as, m;~ =50 MeV
from the scaling analysis.

Bazavov et. al. PRD 95, 074505 (2017)
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Chiral transition for zero chemical

potential with HISQ
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Ny=3 : 1st order phase transition
ruled out for 230 MeV > m; >80
MeV. Bound on critical pion

mass is given as, m;~ =50 MeV
from the scaling analysis.

Bazavov et. al. PRD 95, 074505 (2017)

myd

Nr=2+1 : No hint of 1st order phase
transition for m;>55 MeV. chiral transition

is most likely 2nd order O(N) rather than
1st order.

A. Lahiri et. al. , QM 2018, arXiv:1807.05727
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Chiral transition for zero chemical

potential with HISQ

» HotQCD results on chiral phase transition, [¢ = 0 ]
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Chiral transition for zero chemical

potential with HISQ

» HotQCD results on chiral phase transition, [¢ = 0 ]
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HotQCD: Based on
studies with HISQ action
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Chiral transition for zero chemical

potential with HISQ

» HotQCD results on chiral phase transition, [¢ = 0 ]

chiral limit Np = 2 Pure chiral limit Ny = 2 Pure
Nr =2 Gauge 1 Nr =2 Gauge
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myqd Mmuyd
HotQCD: Based on However, still one can argue that
studies with HISQ action 1st order transition
can be possible for,
m, < 55 MeV
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Central Question:
Nature of the chiral symmetry restoring
transition at =0 at the chiral limit??

Does a 1st order chiral symmetry restoring transition exist
at =0 below a certain critical quark mass (mcri) ??
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Central Question:
Nature of the chiral symmetry restoring
transition at =0 at the chiral limit??

Does a 1st order chiral symmetry restoring transition exist
at =0 below a certain critical quark mass (mcri) ??

Another possible way to
examine the 1st order nature
of chiral transition(u=0) is to
study the phase diagram in
the Roberge-Weiss (RW)
plane(iu/T=ir/3). In the RW
plane the first order
region(chiral) expected to
become largest.

Possible scenario of extended 3d Columbia plot
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Central Question:
Nature of the chiral symmetry restoring
transition at =0 at the chiral limit??

Does a 1st order chiral symmetry restoring transition exist
at =0 below a certain critical quark mass (mcri) ??

N =2 Another possible way to
examine the 1st order nature
of chiral transition(u=0) is to
study the phase diagram in
A the Roberge-Weiss (RW)
ﬁf{ plane(iy/T=im/3). In the RW
e eing plane the first order
region(chiral) expected to

w/T=1/3 become largest.

Tud

General strategy:Locate the physical point for N/=2+1, approach the chiral limit while keeping
the strange quark mass fix to its physical value. Extrapolate the result to y=0.
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Few details about the RW plane

~ L
- ~
----------
......

0

 If (1u) is purely imaginary then we can compare the results
with the real chemical potential as, [Taylor expansion method]

» The partition function is periodic in u/T as,
Z(u/TYy=2(u/T+2km/3), known as , Roberge-Weiss(RW)
periodicity. And u/T=(2k+1)m/3, is known as RW plane.
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Possible fate of the RW end point

Intermediate quark mass

TRWtrans. For, intermediate pion mass RW end point
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Studies in the RW plane

Mostly with unimproved actions

Nr=2: 1st order triple point (at the
end of the line of 1st order RW
transitions) exist for u/T=n/3 and
Mecri >Mphy.

Standard staggered action:

mz ~ 400 MeV(N=4)
Standard Wilson action:
mz ~ 930 MeV(N;=4)
mz ~ 680 MeV (N=6)
The results are strongly fermion

discretization scheme and cut-
off(N;) dependent.

P. de Forcrand et. al, PRL 105, 152001(2010),
Owe Philipsen et. al, PRD 89, 094504(2014),
Christopher Czaban et al, PRD 93, 054507
(2016)

e ————
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Studies in the RW plane

, _ | Very recent studies with improved
Mostly with unimproved actions actions.

Nr=2: 1st order triple point (at the Stout improved staggered

end of the line of 1st order RW fermions(Nr=2+1): For physical
transitions) exist for u/T=n/3 and quark mass the RW endpoint is

Meri >Mphy. belongs to the Z(2) universality class.
Standard staggered action:

mz ~ 400 MeV(N=4)
Standard Wilson action:
mz ~ 930 MeV(N=4)
mz ~ 680 MeV (N=6)

C. Bonati et. al,PRD 93, 074504 (2016)

No, 1st order triple point exist at
least for m; >50 MeV.

The results are strongly fermion C. Bonati et. al,arXiv:1807.02106 [hep-lat]
discretization scheme and cut-
off(N,) dependent. HISQ(N¢=2): Order of the phase

P. de Forcrand et. al, PRL 105, 152001(2010), | transition at physical point is not

Owe Philipsen et. al, PRD 89, 094504(2014), C|ear(|arge cut-off effects) .
Christopher Czaban et al, PRD 93, 054507
(2016) L.K.Wu, et al. PRD 97,114514(2018)

T — —
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Studies with HISQ in the RW plane

Action, Z(T, 1) = [[@ Uldet M, ()] *det{M ()] *exp[—Sg]

M, = Dysoue) +m, Hris purely imaginary
Simulation details, 1\9 241, Kz

...............................................................................................................................

1/27,1/40, 185, 110,
160 9O

...............................................................................................................................

1/27.1/40, 135,

> Y 1/160,1/320 110,56,40
T is varied in the range, 176-215 MeV, Ger_werally we generated
corresponds to, 20Kk trajectory per T value away
T~T +01T from Tc and 80k trajectory near Tc
c— 7 C
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Ising endpoint of a first order line

Effective Ising Hamiltonian which

Heff(tv 5) — t% -+ h,ﬂ — = defines the universal critical

/' behaviour of the system
temperature like / o .
field magnetization under Z(2) transformation,
(

like operator L 5 &
order parameter)
magnetic field M — — M

like

energy like
operator

Corresponding critical behaviour of QCD in 2nd RW plane [Z(2) transformation],

ImL— —ImL m=l order parameter
Re L - Re L = energy like

ie.at M = Upw

0 8 < B,
lim lim (Im L) = lim (|Im L|)p—o =< ? B <p
OV mec Vi—ros non-zero, if 8 > (.

J. Goswami CPOD 2018




0.02 - 0.02 -
3 3
= 0.00- g 000 .
> S
~0.021, | | iy S— . .
0.05 0.00 0.05 —0.05 000 0.5
5(ImL) o(ImL)

Corresponding critical behaviour of QCD in 2nd RW plane [Z(2) transformation],

ImL— —ImL m=l order parameter
Re L - Re L = energy like

ie.at M = Hpw

0 £ 5 < 8.
lim lim (Im L) = lim (|Im L|)p—o =< it f<pf

h—0V —oco

V—o0 non-zero, if > (.
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Finite size scaling and Z(2) universality class

Free energy and the universal functions for second order transition
near the critical point can be written as,| t=(T-T¢)/T(]

f — b_dfg(bytuta byhuha b_lNo-) +ﬁ15 ’ ul‘ ~ Cl‘t’ ut ~ Chh

af —pDIU U
(Hm LIy =—-|  ~ N;P¥ £ (zgtN 1)
h—0
0°f
=7 ~ N f(2tN}")
h—0

B, — (1/NY)B,  ~ fo(zotN)

7

= ~ N2 f(zotN)

A

h—0

universal scaling function
of order parameter

universal scaling function
of order parameter susceptibility

universal scaling function
of Binder cumulant

universal scaling function
of specific heat

In our case f,v,a and y are Z(2) critical exponents
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Finite size scaling of order parameter and its susceptibility

m, ~ 135 MeV
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Finite size scaling of specific heat and Binder cumulant

m_~ 135 MeV
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Quark mass dependence of RW transition

m; m.(MeV)
my /27 135
m /40 110
m /160 5%
m /320 40

N, =24
® my=m,/27
B my = m,/40 %
1.04 ¢ my=m,/160 z{x mlil
g A myp=mg/320 11 %
= ¢ :
_ )
0.5 i @
¢ &
s 0
180 190 210
T'[MeV]

No significant rise in the peak of the susceptibility of the

order parameter with respect to pion mass upto, m_ ~ 40 MeV

Order of the RW transition seems to be unchanged ??
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Finite size effects on chiral observables
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Finite size effects on chiral observables
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Chiral limit and RW transition

N, =24
Sub. Chiral condensate 388 m— = 2T
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Outlook on the fate of the RW end point

Intermediate quark mass
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Conclusions

 Our studies with HISQ action with physical pion mass
suggests that the RW end point is 2nd order and belongs to
the Z(2) universality class. This is consistent with the earlier
result found with the stout-improved staggered action.

* Preliminary trends at m;~ 40 MeV suggest that the RW end
point remains as Z(2) second order.

» Nature of the chiral transition in the RW plane needs to be
examined further. Favours 2nd order(O(4)) transition at u=0.

» RW transition and chiral phase transition may coincide in
the chiral limit.

¢ Calculations on larger lattices are ongoing.
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result found with the stout-improved staggered action.

* Preliminary trends at m;~ 40 MeV suggest that the RW end
point remains as Z(2) second order.
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Phases in the RW plane

- RW transition happens between two Z(3) sectors of the
Polyakov loop. Hence, the order parameter can be the
phase or the imaginary part of the Polyakov loop.

 In the RW plane, the 1st order region (for small mass)
consists of three 1st order transitions, where high
temperature RW transition meets two chiral phase

transitions.

» The physical point which is crossover for =0 can be 1st
or 2nd order in the RW plane. So, our first goal is to
confirm this issue and then going to the chiral limit to
“search for a 1st order” transition.

J. Goswami, CPOD 2018 25
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Phases in the RW plane

- RW transition happens between two Z(3) sectors of the
Polyakov loop. Hence, the order parameter can be the
phase or the imaginary part of the Polyakov loop.

 In the RW plane, the 1st order region (for small mass)
consists of three 1st order transitions, where high
temperature RW transition meets two chiral phase

transitions.

» The physical point which is crossover for =0 can be 1st
or 2nd order in the RW plane. So, our first goal is to
confirm this issue and then going to the chiral limit to
“search for a 1st order” transition.
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Finite size scaling and Z(2) universality class

Free energy, <0>= ("")a_ah f(..)],_ ~ order parameter
— —d yt yh —1 az
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f universal functions — P2
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universal critical behaviour o
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28



Finite size scaling and Z(2) universality class
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Finite size scaling and Z(2) universality class
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Finite size scaling and Z(2) universality class
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Finite size scaling and Z(2) universality class
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Studies in the RW plane

Mostly with unimproved actions

m, > 1 GeV, for the ‘heavy quark mass RW transition’

'small quark mass RW transition” (v, = 2)

Standard staggered action: m,; ~ 400 MeV (N=4)
Standard Wilson action: m; ~ 930 MeV(N;=4)
mz ~ 680 MeV (N=6)
= 1st order triple point (at the end of the line of 1st order
RW transitions) exist already for u/T=rn/3 and mcri >Mpny,.

« The results are strongly fermion discretization scheme
and cut-off(N:) dependent.

P. de Forcrand et. al, PRL 105, 152001(2010), Owe Philipsen et. al, PRD 89, 094504(2014),
Christopher Czaban et al, PRD 93, 054507 (2016)




Studies in the RW plane

Very recent studies with improved actions,

- Stout improved staggered fermions(Nr=2+1): At the physical quark
mass point(m, ~ 135 MeV) a 2nd order transition in the 3d-Ising

universality class happens instead of a 1st order at the RW
endpoint.

C. Bonati et. al,PRD 93, 074504 (2016)

No 1st order end point (of the line of 1st order RW transitions) for
my; >50 MeV.

C. Bonati et. al,arXiv:1807.02106 [hep-lat]

- HISQ(Nr=2): Order of the phase transition at physical point is not
clear(large cut-off effects) .

L.K.Wu, et al. PRD 97,114514(2018)




