Production of Entropy at the Chiral Phase Transition from Dissipation and Noise

Christoph Herold
with A. Kittiratpattana, J. Steinheimer, M. Nahrgang, A. Limphirat

School of Physics, Suranaree University of Technology

CPOD, September 2018, Corfu
The QCD Phase Diagram
Finding the Critical Point - Theory

1. First principle calculations
 - Solve partition function \mathcal{Z} on a lattice (sign problem for finite μ)
 - Solve Dyson-Schwinger equations

(Fischer, Luecker, Welzbacher, Phys. Rev. D 90 (2014))
Finding the Critical Point - Theory

2. Effective models

- Extension with Polyakov loop, baryonic degrees of freedom
- Existence/location of CP not universal!

Finding the Critical Point - Theory

3. Susceptibilities

(Skokov, Friman, Redlich, Phys. Rev. C. 83 (2011))
4. Susceptibilities and cumulants

- Generalized susceptibilities:

\[c_2 = \frac{\partial^2 (p/T^4)}{\partial(\mu/T)^2} = \frac{1}{VT^3} \langle \delta N^2 \rangle \]

\[c_4 = \frac{\partial^4 (p/T^4)}{\partial(\mu/T)^4} = \frac{1}{VT^3} \left[\langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2 \right] \]

- Independent of volume and temperature

\[\kappa \sigma^2 = c_4 / c_2 = \frac{\langle \delta N^4 \rangle}{\langle \delta N^2 \rangle} - 3 \langle \delta N^2 \rangle \]
Finding the Critical Point - Experiment

1. Higher order cumulants: beam energy scan (BES) at STAR

- Higher order cumulants

\[\sigma^2 = \langle \delta N^2 \rangle \sim \xi^2 \]

\[S\sigma = \frac{\langle \delta N^3 \rangle}{\langle \delta N^2 \rangle} \sim \xi^{2.5} \]

\[\kappa \sigma^2 = \frac{\langle \delta N^4 \rangle}{\langle \delta N^2 \rangle} - 3\langle \delta N^2 \rangle \sim \xi^5 \]

(Stephanov, Phys. Rev. Lett. 102 (2009))

(STAR collaboration, Phys. Rev. Lett. 112 (2014))
2. ξ-sensitive observables: caveats

- Finite size effects
- Finite time effects
- Critical slowing down

Will influence potential signals

Phenomenologically

$$\frac{d}{dt} m_\sigma(t) = \Gamma(m_\sigma(t)) \left(m_\sigma(t) - \frac{1}{\xi_{eq}(t)} \right)$$

(Berdnikov, Rajagopal, Phys. Rev. D 61 (2000))
Finding the Critical Point - Experiment

3. A dynamical kurtosis

Cumulants are influenced by:
- Relaxation time
- Homogeneous medium
- Inhomogeneous medium

(Mukherjee, Venugopalan, Yin, Phys. Rev. C 92, (2015))

(CH, Nahrgang, Bleicher et al., EPJ A54, (2018))
Finding the Critical Point - Experiment

- Nonequilibrium evolution
 \[\frac{\partial^2 \sigma}{\partial t^2} - \nabla^2 \sigma + \eta \frac{\partial \sigma}{\partial t} + \frac{\delta \Omega}{\delta \sigma} = \xi \]

- Net-proton kurtosis follows sigma kurtosis

(CH, Nahrgang, Yan, Kobdaj, PRC 93 (2016))

- Corresponds with
 \[\langle \delta N^4 \rangle = \langle N \rangle + \kappa_4 \left(\frac{gd}{T} \int p \frac{n_p}{\gamma_p} \right)^4 + \ldots \]

(Stephanov, Phys. Rev. Lett. 107, (2011))

- Cumulants of sigma determine evolution of experimental observables
Finding a First-order Phase Transition

1. Nonequilibrium enhancement of fluctuations
 - Nonequilibrium fluctuations interesting at first-order transition
 - Spinodal decomposition
 - Amplification of inhomogeneities

Finding a First-order Phase Transition

2. Dynamical model

- Formation of metastable phase
- Dynamical fragmentation
- Droplets
- Non-statistical multiplicity fluctuations
Finding a First-order Phase Transition

3. Directed flow

- **a) antiproton**
- **b) proton**
- **c) net proton**

- v_1 sensitive to EoS
- Possible signal for first-order phase transition

(Steinheimer et al., PRC 89 (2014))
Ingredients for Nonequilibrium Chiral Fluid Dynamics $N\chi$FD model

- Nonequilibrium dynamics and Bjorken expansion
- *damping* and *stochastic fluctuations*

$$\ddot{\sigma} + \eta \dot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = \xi$$

$$\dot{\varepsilon} = -\frac{e + P}{\tau} + \left(\frac{\delta \Omega}{\delta \sigma} + \eta \dot{\sigma} \right) \dot{\sigma}, \quad \dot{n} = -\frac{n}{\tau}$$

(Herold, Kittiratpattana, Steinheimer, Nahrgang, in prep. (2018))

Based on $L\sigma M$

$$\mathcal{L} = \bar{q} (i \gamma^\mu \partial_\mu - g \sigma) + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - U(\sigma), \quad \text{possibly extended with } \ell, \chi$$

- Successfully describes: *spinodal dynamics, criticality*
NχFD - Entropy production

- **Full Langevin:**

 \[
 \ddot{\sigma} + \eta \dot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = \xi
 \]

- **W/o dissipation and noise:**

 \[
 \ddot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = 0
 \]

- **W/ dissipation, w/o noise:**

 \[
 \ddot{\sigma} + \eta \dot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = 0
 \]
NχFD - Initial Conditions

Impact of expansion rate $1/\tau$:
- Trajectory
- Amount of reheating
- Entropy production
- Entropy production becomes stronger at higher μ_B
- Possible signal for first-order phase transition?
- Search for steps in π multiplicities or π/p ratio
Summary

- Dissipation and noise produce entropy
- Relevant effect for first-order chiral phase transition
- Possibly observable in π/p ratio