Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Production of Entropy at the Chiral Phase Transition from Dissipation and Noise

Christoph Herold with A. Kittiratpattana, J. Steinheimer, M. Nahrgang, A. Limphirat

School of Physics, Suranaree University of Technology

CPOD, September 2018, Corfu

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Productio

Summary

The QCD Phase Diagram

© 2015 Contemporary Physics Education Project - www.CPEPphysics.org

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding the Critical Point - Theory

1. First principle calculations

- Solve partition function \mathcal{Z} on a lattice (sign problem for finite μ)
- Solve Dyson-Schwinger equations

(Fischer, Luecker, Welzbacher, Phys. Rev. D 90 (2014))

Phase Transitions in QCD

Critical Point

First-order Phas Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding the Critical Point - Theory

2. Effective models

- Extension with Polyakov loop, baryonic degrees of freedom
- Existence/location of CP not universal!

(Dexheimer, Schramm, Phys. Rev. C 81 (2010) 045201)

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding the Critical Point - Theory

3. Susceptibilities

(Skokov, Friman, Redlich, Phys. Rev. C. 83 (2011))

(Skokov, Friman, Redlich, Phys. Rev. C. 83 (2011))

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluic Dynamics

Entropy Production

Summary

Finding the Critical Point - Theory

4. Susceptibilities and cumulants

(Skokov, Friman, Redlich, Phys. Rev. C. 83

(2011))

• Generalized susceptibilities:

$$c_{2} = \frac{\partial^{2}(p/T^{4})}{\partial(\mu/T)^{2}} = \frac{1}{VT^{3}} \langle \delta N^{2} \rangle$$

$$c_{4} = \frac{\partial^{4}(p/T^{4})}{\partial(\mu/T)^{4}} = \frac{1}{VT^{3}} \left[\langle \delta N^{4} \rangle - 3 \langle \delta N^{2} \rangle^{2} \right]$$

Independent of volume and temperature

(

$$\kappa\sigma^2 = c_4/c_2 = rac{\langle\delta N^4
angle}{\langle\delta N^2
angle} - 3\langle\delta N^2
angle$$

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding the Critical Point -Experiment

1. Higher order cumulants: beam energy scan (BES) at STAR

 Higher order cumulants

$$\sigma^{2} = \langle \delta N^{2} \rangle \sim \xi^{2}$$
$$S\sigma = \frac{\langle \delta N^{3} \rangle}{\langle \delta N^{2} \rangle} \sim \xi^{2.5}$$
$$\kappa \sigma^{2} = \frac{\langle \delta N^{4} \rangle}{\langle \delta N^{2} \rangle} - 3 \langle \delta N^{2} \rangle \sim \xi^{5}$$

(Stephanov, Phys. Rev. Lett. 102 (2009))

(STAR collaboration, Phys. Rev. Lett. 112 (2014))

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding the Critical Point -Experiment

2. ξ -sensitive observables: caveats

- Finite size effects
- Finite time effects
- Critical slowing down

Will influence potential signals

Phenomenologically

$$rac{\mathrm{d}}{\mathrm{d}t}m_{\sigma}(t) = \Gamma(m_{\sigma}(t))\left(m_{\sigma}(t) - rac{1}{\xi_{\mathrm{eq}}(t)}
ight)$$

(Berdnikov, Rajagopal, Phys. Rev. D 61 (2000))

Phase Transitions in QCD

Critical Point

First-order Phas Transition

Chiral Fluid Dynamics

Entropy Productio

Summary

3. A dynamical kurtosis

(Mukherjee, Venugopalan, Yin, Phys. Rev. C 92, (2015))

Cumulants are influence by:

- Relaxation time
- Homogeneous medium
- Inhomogeneous medium

(CH, Nahrgang, Bleicher et al., EPJ A54, (2018))

Finding the Critical Point -Experiment

- Phase Transitions in QCD
- Critical Point
- First-order Phase Transition
- Chiral Fluid Dynamics
- Entropy Production
- Summary

Finding the Critical Point -Experiment

Nonequilibrium evolution

$$\frac{\partial^2 \sigma}{\partial t^2} - \nabla^2 \sigma + \eta \frac{\partial \sigma}{\partial t} + \frac{\delta \Omega}{\delta \sigma} = \xi$$

 Net-proton kurtosis follows sigma kurtosis

(CH, Nahrgang, Yan, Kobdaj, PRC 93 (2016))

• Corresponds with

$$\langle \delta N^4 \rangle = \langle N \rangle + \kappa_4 \left(\frac{gd}{T} \int_p \frac{n_p}{\gamma_p} \right)^4 + \dots$$

(Stephanov, Phys. Rev. Lett. 107, (2011))

 Cumulants of sigma determine evolution of experimental observables

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Productio

Summary

Finding a First-order Phase Transition

1. Nonequilibrium enhancement of fluctuations

- Nonequilibrium fluctuations interesting at first-order transition
- Spinodal decomposition
- Amplification of inhomogeneities

(Sasaki, Friman and Redlich, J. Phys. G 35 (2008))

Phase Transitions in QCD

Critical Point

First-order Phas Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Finding a First-order Phase Transition

2. Dynamical model

(Sasaki, Friman, Redlich, PRD 77 (2008))

- Formation of metastable phase
- Dynamical fragmentation
- Droplets
- Non-statistical multiplicity fluctuations

(Steinheimer, Randrup, PRL 109 (2012))

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Productio

Summary

Finding a First-order Phase Transition

3. Directed flow

⁽STAR collaboration, PRL 112 (2014))

- v₁ sensitive to EoS
- Possible signal for first-order phase transition

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Ingredients for Nonequilibrium Chiral Fluid Dynamics $N_X FD$ model

- Nonequilibrium dynamics and Bjorken expansion
- damping and stochastic fluctuations

$$\ddot{\sigma} + \eta \dot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = \xi$$

 $\dot{e} = -\frac{e+P}{\tau} + \left(\frac{\delta \Omega}{\delta \sigma} + \eta \dot{\sigma}\right) \dot{\sigma} , \quad \dot{n} =$

00

(Herold, Kittiratpattana, Steinheimer, Nahrgang, in prep. (2018))

Based on $L\sigma M$

$$\mathcal{L} = \bar{q} \left(i \gamma^{\mu} \partial_{\mu} - g \sigma \right) + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - U(\sigma) \,, \, \text{ possibly extended with } \ell, \, \chi$$

• Successfully describes: spinodal dynamics, criticality

$N\chi FD$ - Idea

Phase Transitions in QCD

Critical Point

First-order Phas Transition

Chiral Fluic Dynamics

Entropy Production

Summary

1.2 1 $\langle \sigma \rangle / f_{\pi}$ 0.8 0.6 Langevin 0.4 $\eta = 0, \xi = 0$ $\eta > 0, \xi = 0$ 0.2 0.6 0.5 $\Delta\sigma/f_{\pi}$ 0.4 0.3 0.2 0.1 140 136 S/N 132 128 124 2 8 9 10 3 5 6 7 τ (fm)

$N\chi FD$ - Entropy production

Full Langevin:

$$\ddot{\sigma}+\eta\dot{\sigma}+\frac{\delta\Omega}{\delta\sigma}=\xi$$

• W/o dissipation and noise:

$$\ddot{\sigma} + \frac{\delta\Omega}{\delta\sigma} = 0$$

• W/ dissipation, w/o noise:

$$\ddot{\sigma} + \eta \dot{\sigma} + \frac{\delta \Omega}{\delta \sigma} = \mathbf{0}$$

185 T=162 MeV, u=18 MeV T=171 MeV, µ=19 MeV 170 T=180 MeV, µ=10 MeV 155 T (MeV) 140 125 110 95 12.5 15.5 17 18.5 20 14 120 T=83 MeV, µ=250 MeV T=92 MeV, μ=275 MeV T=100 MeV, μ=300 MeV 110 100 T (MeV) 90 80 70 60 50 40 200 220 240 260 280 300 μ (MeV)

$N\chi$ FD - Initial Conditions

Impact of expansion rate $1/\tau$:

- Trajectory
- Amount of reheating
- Entropy production

Phase Transitions in QCD

Critical Point

First-order Phas Transition

Chiral Fluid Dynamics

Entropy Production

Summary

N χ FD - QCD Phase Diagram

- Entropy production becomes stronger at higher μ_B
- Possible signal for first-order phase transition?
- Search for steps in π multiplicities or π/p ratio

Phase Transitions in QCD

Critical Point

First-order Phase Transition

Chiral Fluid Dynamics

Entropy Production

Summary

Summary

- Dissipation and noise produce entropy
- Relevant effect for first-order chiral phase transition
- Possibly observable in π/p ratio

