Missing Resonances

Flavor Heirarchy

Outlook 000000

1/34

Freeze-out temperature from net-Kaon fluctuations at RHIC

Jacquelyn Noronha-Hostler

Alba, Bellwied, Mantovani Sarti, Parotto, Vazquez, Ratti, Stafford+[WB Collaboration]

CPOD 2018 : Sept 26th, 2018

Missing Resonances

Flavor Heirarchy

Outlook

Current Carton of the QCD Phase Diagram

References

Light transition Phys.Lett. B738 (2014) 305-310; Strange Transition Bellwied, JNH, Parotto, Vazquez, Ratti, Stafford, arXiv:1805.00088 ; Neutron Star (mergers) V. Dexheimer ariXiv:1708.08342; Holography Critelli, JNH, Israel Portillo Tues. 19:00 et al, Phys.Rev. D96 (2017) no.9, 096026

Missing Resonances

Flavor Heirarchy

Outlook 0000<u>00</u>

Understanding the cross-over phase transition

References Light transition Phys.Lett. B738 (2014) 305-310; Strange TransitionBellwied, JNH, Parotto, Vazquez, Ratti, Stafford, arXiv:1805.00088

Freeze-out o●oooo Missing Resonances

Flavor Heirarchy

Outlook 000000

Freeze-out: finding the cross-over temperature

Missing Resonances

Flavor Heirarchy

Outlook 000000

Thermal fits: position on the phase diagram

- Assume particles are in thermal and chemical equilibrium (Grand Canonical Ensemble)
- Calculate ratios of particles in HRG across T and μ_B (volume cancels)
- Extract chemical equilibrium T & μ_B , \rightarrow shortly after hadronization
- Lower Beam Energies=Larger μ_B Beam Energy Scan

< ロ > < 同 > < 回 > < 回 >

Flavor Heirarchy

Outlook 0000<u>00</u>

6/34

Tension between protons and strange baryons

protons still overpredicted (prefer lower T_{FO}) and strange baryons underpredicted (prefer higher T_{FO})

Flavor Heirarchy

Outlook 000000

Consistent deviations for light vs. strange baryons

Missing Resonances

Flavor Heirarchy

Outlook 000000

Strange baryons $\Uparrow T_{ch}$ by ~ 10 MeV

find missing resonances

<ロト < 団 > < 臣 > < 臣 > ○ Q () 9/34

Flavor Heirarchy

Outlook 0000000

Determining the Number of Hadronic States

Quark Model states (predicted, not yet measured)

 μ_S/μ_B from Hadron Resonance Gas matches Lattice QCD

↓ the freeze-out line**

[HotQCD] Phys.Rev.Lett. 113 (2014) no.7, 072001 *Quark Model States: Phys. Rev. D 34, 2809 (1986),Phys. Rev. D 79, 114029 (2009)

< ロ > < 同 > < 回 > < 回 >

**No decays included

Flavor Heirarchy

Susceptibilities

Taking derivatives of the pressure gives further information

$$\chi_{lmn}^{BSQ} = \frac{\delta^{l+m+n} p/T^4}{\delta \left(\mu_B/T\right)^l \delta \left(\mu_S/T\right)^m \delta \left(\mu_Q/T\right)^n}$$

- For instance, taking partial derivatives respect to Strangeness selects on only strange hadrons.
- The chemical potentials are constrained by experiments $\langle \rho_S \rangle = 0$ and $\langle \rho_Q \rangle = 0.4 \langle \rho_B \rangle$
- Higher-order susceptibilities more sensitive to critical behavior

Missing Resonances

Flavor Heirarchy

Outlook

Quark Model states overpredict χ_4^S/χ_2^S

[WB collaboration] Alba, JNH et al Phys.Rev. D96 (2017) no.3, 034517

Flavor Heirarchy

Outlook 000000

PDG16+ all measured states

PDG16 includes * and ** states, measured but little information known about these states

[WB collaboration] Alba, JNH et al Phys.Rev. D96 (2017) no.3, 034517

Missing Resonances

Flavor Heirarchy

Pressure by Baryon Number, Strangeness, Charge

Can separate pressure by quantum numbers e.g. for strange hadrons (can separate by any BSQ, though)

$$P_{S}(\hat{\mu}_{B}, \hat{\mu}_{S}) = P_{0|1|} \cosh(\hat{\mu}_{S}) + P_{1|1|} \cosh(\hat{\mu}_{B} - \hat{\mu}_{S}) + P_{1|2|} \cosh(\hat{\mu}_{B} - 2\hat{\mu}_{S}) + P_{1|3|} \cosh(\hat{\mu}_{B} - 3\hat{\mu}_{S})$$

$$\begin{aligned} P_{0|1|} &= \chi_2^S - \chi_{22}^{BS} \\ P_{1|1|} &= \frac{1}{2} \left(\chi_4^S - \chi_2^S + 5\chi_{13}^{BS} + 7\chi_{22}^{BS} \right) \\ P_{1|2|} &= -\frac{1}{4} \left(\chi_4^S - \chi_2^S + 4\chi_{13}^{BS} + 4\chi_{22}^{BS} \right) \\ P_{1|3|} &= \frac{1}{18} \left(\chi_4^S - \chi_2^S + 3\chi_{13}^{BS} + 3\chi_{22}^{BS} \right) \end{aligned}$$

Note all $P_{B|S|}$ taken at the limit of $\mu_B = 0$

Flavor Heirarchy

Outlook 000000

Partial pressure closer to Lattice QCD data

PDG16+ and hQM+PDG16+ closest to Lattce QCD data. Use PDG16+ since the most information is known about these states.

Missing Resonances

Flavor Heirarchy

Outlook 000000

Should light freeze-out = strange hadrons freeze-out?

Look to fluctuations of conserved charges

Missing Resonances

Flavor Heirarchy

Outlook 000000

Flavor heirarchy in χ_4^S/χ_2^S

Missing Resonances

Flavor Heirarchy

Connecting the Beam Energy Scan to Lattice QCD

RHIC measures [STAR] Phys.Rev.Lett. 112 (2014) 032302
mean :
$$M = \chi_1$$
 variance : $\sigma^2 = \chi_2$
skewness : $S = \chi_3/\chi_2^{3/2}$ kurtosis : $\kappa = \chi_4/\chi_2^2$

Lattice QCD calculates Karsch Central Eur.J.Phys. 10 (2012) 1234-1237

$$S\sigma = \chi_3/\chi_2 \qquad \qquad \kappa\sigma^2 = \chi_4/\chi_2$$

$$\sigma^2/M = \chi_2/\chi_1 \qquad \qquad S\sigma^3/M = \chi_3/\chi_1$$

Missing Resonances

...

Flavor Heirarchy

Outlook 000000

Acceptance cuts in the Hadron Resonance Gas

$$\begin{split} \tilde{\chi}_{n}^{K^{\pm}} &= \sum_{i}^{N_{HRG}} (Pr_{i \to K^{\pm}} S_{i})^{n} \frac{d_{i}}{4\pi^{2}} \cdot \\ &\cdot \frac{\partial^{n-1}}{\partial \mu_{S}^{n-1}} \left\{ \int_{-0.5}^{0.5} \mathrm{d}y \int_{0.2}^{1.6} \mathrm{d}p_{T} \times \frac{p_{T} E_{T} \mathrm{Cosh}[y]}{(-1)^{B_{k}+1} + \exp((\mathrm{Cosh}[y] E_{T} - \mu_{i}/T))} \right\} \\ \text{where } E_{T} &= \sqrt{p_{T}^{2} + m_{k}^{2}} \text{ and } \mu_{i} = (B_{i}\mu_{b} + S_{i}\mu_{S} + Q_{i}\mu_{Q}) \end{split}$$

<ロト < 団 ト < 巨 > < 巨 > 三 の Q (C) 19/34

Flavor Heirarchy

Outlook

Comparison of HRG to Lattice QCD

Isentrope lines $S/N_B = const$ generated from Freeze-out point 220 T [MeV] 210 200 190 180 Net-p Net-O 170 160 150 (H) 140 ertal_Budapest 130 μ_B [MeV] preliminary 50 100 150 200 250 n

[WB] Phys.Rev.Lett. 113 (2014) 052301

Caveats: effects from acceptance cuts, decays, finite size effects etc

Missing Resonances

Flavor Heirarchy

Outlook 000000

Fluctuations of net-Kaons

UrQMD fails to capture M/σ^2 in 0 – 5%

[STAR] Phys. Lett. B 785, 551 (2018)

> ・ロ> ・日> ・ヨ> ・ヨ> ・ヨ> ・ヨー のへで 21/34

Missing Resonances

Flavor Heirarchy

Outlook

Isentropes vs. STAR data at $s_{NN} = 200 \text{ GeV}$

Bellwied, JNH, Parotto, Vazquez, Ratti, Stafford, arXiv:1805.00088

Missing Resonances

Flavor Heirarchy

Outlook

Isentropes vs. STAR data at $s_{NN} = 19.6$ GeV

Bellwied, JNH, Parotto, Vazquez, Ratti, Stafford, arXiv:1805.00088

Missing Resonances

Flavor Heirarchy

Flavor hierarchy seen compared to STAR data at RHIC

Thermal fits also see flavor hierarchy [STAR] Phys. Rev. C 96 (2017) 44904

Flavor Heirarchy

Outlook 000000

Predictions from net-Λ's

Bellwied, JNH, Parotto, Vazquez, Ratti, Stafford, arXiv:1805.00088

Missing Resonances

Flavor Heirarchy

Outlook

26/34

Independent confirmation- net-K fluctions and Hyperon yields

Flavor Heirarchy

Outlook 000000

Probablistic decays

Bluhm and Narhgang, arXiv:1806.04499

Flavor Heirarchy

Outlook •00000

Flavor Heirarchy

Outlook o●oooo

Understand kaon resonances

Missing Resonances

Flavor Heirarchy

Outlook oo●ooo

Continuum extrapolation difficult

Flavor Heirarchy

Hydrodynamics simulations

- New Equation of State with strange particles freezing out at a higher temperature
- Strangeness and baryon number conservation
- Strangeness and baryon number diffusion
- Initial conditions with a strange and baryon number distribution
- Hadronization that considers charge conservation

Missing Resonances

Flavor Heirarchy

Outlook oooo●o

Would it be worth it? Check in oversimplified hydro

Flavor Heirarchy

Conclusions and Outlook

- PDG16+ best compromise with current Lattice QCD data
- {*T_{ch}*, μ_B} extracted from net-K's incompatible with net-p and net-Q
- net-A's also appear to favor a higher $\{T_{ch}, \mu_B\}$
- Long way off from conclusive dynamical simulations

Backup Slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Flavor Heirarchy

(日)

Outlook 0000000

33/34

Selecting only charged kaons in Lattice QCD

Experiments measure $K^{+/-}$, Lattice QCD includes K^0 , Λ , Ξ , Ω

Partial pressure of $K^{+/-}$: $P_{K^{+/-}} = P_{0|1||1|} \cosh(\hat{\mu}_{S} + \hat{\mu}_{Q})$ where $P_{0|1||1|} = \chi_{2}^{S} - \chi_{22}^{BS}$

Taking derivatives:

$$\frac{\chi_2^K}{\chi_1^K} = \frac{\cosh(\hat{\mu}_S + \hat{\mu}_Q)}{\sinh(\hat{\mu}_S + \hat{\mu}_Q)}$$
$$\frac{\chi_3^K}{\chi_2^K} = \frac{\sinh(\hat{\mu}_S + \hat{\mu}_Q)}{\cosh(\hat{\mu}_S + \hat{\mu}_Q)}$$
$$\frac{\chi_4^K}{\chi_2^K} = \frac{\chi_e^K}{\chi_e^K} = 1$$

Missing Resonances

Flavor Heirarchy

Outlook

Isentropes and net-Kaons constrain T_{FO}^S

4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 のへで
33/34

Missing Resonances

Flavor Heirarchy

Flavor hierarchy seen compared to STAR data at RHIC

Thermal fits also see flavor hierarchy [STAR] Phys. Rev. C 96 (2017) 44904

Flavor Heirarchy

Fluctuations near a critical point

Feature of a critical point: divergence of the correlation length ξ

The probability distribution for the order parameter (chiral condensate)

 $P[\sigma] \sim \exp{\{-\Omega[\sigma]/T\}}$

$$\Omega \;=\; \int \mathrm{d}^3 x \, \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma_2 + \frac{\lambda_3}{3} \sigma^3 + \cdots \right] \label{eq:Omega}$$

For electric Charge Fluctuation, the correlation length $(\xi = m_{\sigma}^{-1})$

 $\xi \sim |T - T_c|^{u}$ where u > 0

$$\chi_2 = VT\xi^2$$

$$\chi_3 = 2VT^{3/2}\hat{\lambda}_3\xi^{9/2}$$

$$\chi_4 = 6VT^2[2\hat{\lambda}_3^2 - \hat{\lambda}_4]\xi^7$$

・ロト・日本・日本・日本・日本・日本

Flavor Heirarchy

Extraction of the freeze-out line from susceptibilities

Freeze out points $[T - \mu_B]$ are extracted from the line made by the closer points between χ_1/χ_2 and χ_3/χ_2

Flavor Heirarchy

Effects of decays, full statistics, acceptance cuts

Acceptance/decays small effect for χ_2/χ_2 but higher order cumulants necessitate decays!

.

Flavor Heirarchy

Fermi-sign problem

The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

$$Z(\mu_B, T) = \mathsf{Tr}\left(e^{-rac{H_{QCD}-\mu_B N_B}{T}}
ight) = \int \mathcal{D}U e^{-S_G[U]} \mathsf{det}\; M\left[U, \mu_B
ight]$$

where for finite μ_B then det $M[U, \mu_B] \rightarrow$ complex so Monte Carlo simulations are no longer possible

- Taylor expansion around $\mu_B = 0$ (Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003)
- Reweighting (complex phase moved from the measure to observables) (Barbour et al. 1998; Z. Fodor and S, Katz, 2002)
- Simulations at imaginary chemical potentials (plus analytic continuation) (Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D'Elia, Lombardo 2003)

Flavor Heirarchy

Outlook 000000

Phase Diagram from Lattice QCD

Trajectories of heavy-ion collisions assuming a constant entropy [Wuppertal Budapest Collaboration] arXiv:1607.02493

$$\chi_{lmn}^{BSQ} = \frac{\delta^{l+m+n} p/T^4}{\delta \left(\mu_B/T\right)^l \delta \left(\mu_S/T\right)^m \delta \left(\mu_Q/T\right)^n}$$

Melting hadrons

Susceptibilities from Lattice QCD compared to particle numbers of conserved charges used to calculate the freeze-out line

Flavor Heirarchy

Outlook 0000000

Are the freeze-out T's of light and strange equal? Connecting first principle Lattice QCD calculations to Beam Energy Scan data

Look to experimental data of Baryons vs. Kaons Only can see a minimum $T_{strange}^{min} > 148$ MeV.

$$M_K/\sigma_K^2 = anh^{-1}(\hat{\mu}_S + \hat{\mu}_Q)$$

Flavor Heirarchy

Outlook 000000

Quantum Chromodynamics Describing interactions between quarks *q* and gluons *g*

• Quarks described by Spin= $\frac{1}{2}$ Dirac Fields $\psi_{\alpha}^{i,q}(x)$

- α Dirac spinor index
- *i* = (1,2,3) *SU*(3) color index
- q = (u, d, s, c, b, t) flavor index
- **Gluons** described by Spin= 1 Vector Fields $A^a_{\mu}(x)$
 - μ Lorentz vector index
 - *a* = (1, 2, ..8) color index
- Gell-Mann matrices in color space (λ^a)_{ij}

• SU(3), naturally generalize the Pauli matrices for SU(2)

•
$$\left[\frac{\lambda_a}{2}, \frac{\lambda_b}{2}\right] = if_{abc}\frac{\lambda_c}{2}$$

Flavor Heirarchy

Outlook 000000

Quantum Chromodynamics Lagrangian

• Gauge Invariance

$$\psi(x) \rightarrow \psi'(x) = U(x)\psi(x) = e^{-i\theta_a(x)\lambda_k/2}\psi(x)$$

where $U(x)$ is a 3x3 unitary matrix
• QCD Langrangian
 $L_{QCD} = \underbrace{-\frac{1}{4}F^a_{\mu\nu}F^a_a}_{\text{Gluon Fields}} + \underbrace{\psi^q(i\gamma_\mu D^\mu - m_q)\psi^q}_{\text{Quark Fields}}$
where gluon field $F^a_{\mu\nu} = \underbrace{\partial_\mu A^a_\nu - \partial_\nu A^a_\mu}_{\text{QED}} + \underbrace{gf^{abc}A^b_\mu A^c_\nu}_{\text{gauge invariance}}$
and $D^\mu = \partial^\mu - igA^\mu(x), m_q$ =quark mass depending on the
flavor, and the gauge coupling parameter g is $g^2/(4\pi) = \alpha_s$

Missing Resonances

Flavor Heirarchy

Outlook 000000

Partial Pressure

Flavor Heirarchy

Outlook 000000

Partial Pressure

Flavor Heirarchy

Outlook 000000

Hadron Resonance Gas model

Pressure:

$$p^{HRG}/T^4 = rac{1}{VT^3}\sum_i \ln Z_i(T,\mu)$$

Energy Density:

$$\varepsilon^{HRG}/T^4 = -\frac{1}{VT^3}\sum_i \frac{\partial \ln Z_i(T,\mu)}{\partial (1/T)}$$

Number Density:

$$n^{HRG}/T^3 = rac{1}{VT^2}\sum_irac{\partial\ln Z_i(T,\mu)}{\partial\mu}$$

Entropy density:

$$s^{HRG}/T^3 = \frac{1}{VT^2} \sum_{i} \ln \frac{\partial \ln Z_i(T,\mu)}{\partial T} = \frac{\varepsilon + p - \sum_{j}^{BSQ} \mu_j \rho_j}{T}$$

Missing Resonances

Flavor Heirarchy

Outlook

Einstein-Maxwell-Dirac equations

static charged black hole backgrounds that are spatially isotropic and translationally invariant

Missing Resonances

Flavor Heirarchy

Outlook 000000

Kurtosis at CP

M. A. Stephanov, Phys. Rev. Lett. 107 (2011) 052301

Missing Resonances

Flavor Heirarchy

Outlook 000000

Kurtosis

<ロ>< (日)、< (日)、< (日)、< (日)、< (日)、< (日)、< (日)、< (日)、< (日)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10)、</(10))<//(10)<//(10)<//(10)<//(10)<//(10))<//(10)

Flavor Heirarchy

Outlook 000000

Reconstructing Kurtosis

