Finite-size scaling, intermittency and the QCD critical point

F. K. Diakonos in collaboration with: N.G. Antoniou, N. Davis, N. Kalntis, A. Kanargias, X.N. Maintas and C.E. Tsagkarakis

FACULTY OF PHYSICS, UNIVERSITY OF ATHENS, GREECE

CPOD 2018 Corfu, September 24-28

F.K. Diakonos (U.o.A.)

FSS, intermittency and QCD CEP

Corfu Summer Institute 2018

1/24

Ising-QCD thermodynamics in the critical region

Size of the critical region

4 Locating the CEP

Phase diagram of QCD

A sketch for finite system(s)

Objective: Detection (existence?) of the QCD Critical Point (CP)

 \Downarrow

Equilibrium? (experiment) 3d-Ising universality class, scaling properties with known critical exponents

from R. V. Gavai, Contemporary Physics 57, 350 (2016)

3d-Ising effective action

3d-Ising effective action (dimensionless form) for the order parameter ϕ in the critical region:

$$S_{eff} = \int_{V} d^{3} \hat{\mathbf{x}} \left[\frac{1}{2} |\hat{\nabla} \phi|^{2} + U(\phi) - \hat{h} \phi \right]$$
 with

$$U(\phi) = \frac{1}{2}\hat{m}^2\phi^2 + \hat{m}g_4\phi^4 + g_6\phi^6 \qquad ; \qquad \phi = \beta_c^3 \lim_{\delta V \to 0} \frac{n_{\uparrow} - n_{\downarrow}}{\delta V}$$

 $\hat{x} = x \beta_c^{-1}, \ \hat{m} = \beta_c m, \ m = \xi^{-1}, \ \hat{h} = h \beta_c^{-1}$ universal constants $g_4 \approx 0.97, \ g_6 \approx 2.1$ ξ = correlation length h=ordering field

Partition function
$$\mathcal{Z} = \sum_{\{\phi\}} \exp(-\mathcal{S}_{eff}[\phi])$$

M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994)

Ising-QCD partition function

Constructing the Ising-QCD partition function in the critical region:

$$(\mathbf{n}_{\uparrow},\mathbf{n}_{\downarrow}) \Longrightarrow (\mathbf{n}_{B},\mathbf{n}_{\bar{B}})$$

Scaling properties describable restricting to **protons**! *Y. Hatta and M. A. Stephanov, PRL 91, 102003 (2003)*

Use constant configurations for the field $\phi = \frac{N}{V}$ with $N = N_{\rho}$:

$$\mathcal{Z}_{IQCD} = \sum_{N=0}^{\Lambda} \zeta^{N} \exp\left[-\frac{1}{2}\hat{m}^{2}\frac{N^{2}}{\Lambda} - g_{4}\hat{m}\frac{N^{4}}{\Lambda^{3}} - g_{6}\frac{N^{6}}{\Lambda^{5}}\right]$$

with $\zeta = \exp[(h - h_c)\beta_c]$ ($h_c = 0$ for 3d-Ising) and $\Lambda = \frac{V}{V_0}$ ($V_0 =$ proton volume)

Ising-QCD partition function (continued)

Thermodynamic quantities in \mathcal{Z}_{IQCD} :

$$\mathcal{Z}_{IQCD} = \sum_{N=0}^{\Lambda} \zeta^{N} \exp\left[-\frac{1}{2}\hat{m}^{2}\frac{N^{2}}{\Lambda} - g_{4}\hat{m}\frac{N^{4}}{\Lambda^{3}} - g_{6}\frac{N^{6}}{\Lambda^{5}}\right]$$

Direct mapping

More general

 $h - h_c$ is mapped to $\mu_B - \mu_c$ in ζ T in $\hat{m} = \xi^{-1}\beta_c$ $\xi = \xi_{0,\pm}|1 - \frac{T}{T_c}|^{-\nu}$, $\xi_{0,\pm}$ non-universal with $\frac{\xi_{0,\pm}}{\xi_{0,-}} = 2$
$$\begin{split} h &\to (\mu_B - \mu_c) - \tan \alpha (T - T_c) \\ \xi &\to \xi_{0,\pm} | \frac{T}{T_c} - 1 + \tan \alpha \frac{(\mu_B - \mu_c)}{T_c} |^{-\nu} \end{split}$$

J.J. Rehr and N.D. Mermin, PRA 8, 472 (1973)

Robustness for small α !

Volume in Λ ($\nu = \frac{2}{3}$ for 3d-Ising)

6 / 24

Ising-QCD partition function (in action)

Use \mathcal{Z}_{IQCD} to:

• Calculate proton multiplicity moments $\langle N^k \rangle$ (k = 1, 2, ...)

 \checkmark

Scaling laws? critical exponents?

Size of the critical region?

• Thermodynamic response functions (specific heat, susceptibilities,..)

• Equation of state (pressure) in the neighbourhood of the CEP

Proton multiplicity moments and FSS

For
$$\mu_B = \mu_c$$
, $T = T_c$ we find:
 $\langle N^k \rangle \sim \Lambda^{kq}$, $q = d_F/d$, $k = 1, 2, ..$
 \downarrow
Finite size scaling (FSS) law with $d_F = \frac{5}{2}$ (and $d = 3$)

FSS exponent q is related to the isothermal critical exponent δ

$$q = rac{d_F}{d} = rac{\delta}{\delta+1}$$
; $\delta = 5 \; (3d - Ising)$

Measurement of $q \Rightarrow$ measurement of δ

Unrealistic task, needs systems of different sizes freezing out at the critical point!

Finite size scaling and intermittency

Making the unrealistic possible: in FSS regime the local scaling: $\langle n(\mathbf{x})n(\mathbf{x}')\rangle \sim |\mathbf{x} - \mathbf{x}'|^{-(3-d_F)}$ is valid also globally $(|\mathbf{x} - \mathbf{x}'| = O(V^{1/3}))$ leading to: $\langle N \rangle \propto \Lambda^{\frac{d_F}{3}}$

large distance singular behaviour of density-density correlator $\downarrow\downarrow$

Singularity for small distances in proton transverse momentum space:

$$\lim_{\mathbf{k}\to\mathbf{k}'}\langle n(\mathbf{k})n(\mathbf{k}')\rangle\sim |\mathbf{k}-\mathbf{k}'|^{-2q} \quad ; \quad q=\frac{d_F}{3}=\frac{5}{6}$$

Intermittency (critical opalescence) \Rightarrow *q* is observable!

N.G. Antoniou, N. Davis, F.K. D., PRC 93, 014908 (2016)

Other multiplicity moments

The non-Gaussian kurtosis:

$$\kappa_{nG} = rac{C_4 - 3C_2^2}{C_2^2}$$
; $C_k = \langle (N - \langle N \rangle)^k \rangle$, $k = 2, 3, ...$

becomes negative approaching the critical point

M.A. Stephanov, PRL 107, 052301 (2011)

Calculate cumulants C_k and κ_{nG} through \mathcal{Z}_{IQCD} :

$$\frac{\partial^2}{\partial (\ln \zeta)^2} \ln \mathcal{Z}_{IQCD} = C_2 \quad ; \quad \frac{\partial^4}{\partial (\ln \zeta)^4} \ln \mathcal{Z}_{IQCD} = C_4 - 3C_2^2$$

and explore their behaviour close to the critical point!

Departing from the critical point \Rightarrow Gradual destruction of the FSS law: $(\zeta = 1, t = 0) \qquad \langle N \rangle \sim \Lambda^{\frac{5}{6}}$

In a region around $\zeta = 1$, t = 0 (CP) it holds:

 $\langle N \rangle \sim \Lambda^{\tilde{q}}$

• $\tilde{q} = \frac{3}{4} \Rightarrow$ scaling (q) in mean field theory • $\tilde{q} = 1 \Rightarrow$ trivial scaling

Critical region: region in $(\ln \zeta, t)$ -plane for which $\frac{3}{4} < \tilde{q} < 1$

Size of the critical region (first result)

Critical region $\Delta \mu_B$ $\approx 5 \ MeV$ (for $T_c \approx 160 \ MeV$) \downarrow Very narrow along μ_B -axis

N.G. Antoniou, F.K. D., X.N. Maintas, C.E. Tsagkarakis, PRD 97, 034015 (2018)

Finite size scaling region

FSS condition: $\xi_{\infty} > V^{1/3}$

Bounds along the t axis!

System dependent!

For **medium** (20 < A < 50) size nucleii.

FSS region: 3 $MeV < \Delta T < 5 MeV$ (for $T_c \approx 160 MeV$)

Narrowness along *T*-axis too

11

N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph]

Kurtosis within the critical region

Alternative(s) for the critical region size

N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph]

Critical region size: κ_{nG} vs. FSS varying α

Critical region size along μ_B is 3 $MeV \le \Delta \mu_B \le 11 MeV$ for all α !

N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph]

Intermittency in Si + Si collisions (NA49, SPS, CERN)

F.K. Diakonos (U.o.A.)

17 / 24

Line $\tilde{q} = 0.96$ determines μ_c for known T_c (Lattice QCD) recent result: $T_c = 163 \ MeV$ S. Datta et al, PRD 95, 054512 (2017) Freeze-out of Si*: $(\mu_{Si}, T_{Si}) = (260, 162.2) MeV$ $T_c = 163 MeV$ \downarrow $\ln \zeta_{Si} = 0.0143 \Rightarrow$ $\mu_c = 257.7 MeV$

*: F. Becattini, J. Manninen and M. Gazdzicki, PRC 73, 044905 (2006)

Predictions for NA61/SHINE freeze-out states

Freeze-out conditions for Ar+Sc and Xe+La \Rightarrow use NA49 results

 $\sqrt{s} = 17.2 \text{ GeV}$

 $\frac{\text{Freeze-out of central Ar+Sc:}}{(\mu_{ArSc}, T_{ArSc}) = (258, 160.9) MeV}$

 $\frac{\text{Freeze-out of central Xe+La:}}{(\mu_{XeLa}, T_{XeLa}) = (251, 158.2) MeV}$

N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph]

Enriched sketch of the critical region

F. Becattini, et al, PRC 90, 054907 (2014); N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph]

Enriched sketch of the critical region for $\alpha \neq 0$

. (~ 21 / 24

- Critical (FSS) region is very narrow O(5 MeV) along the μ_B and the T axis.
- Beam energy scan program at RHIC with $\Delta \mu_B \approx 50 \text{ MeV}$ is very unlike to approach the critical region.
- Important NA49 result: freeze-out state of central Si+Si collisions at $\sqrt{s} = 17.2$ GeV lies within the critical (FSS) region! (needs accurate measurements to reduce statistical errors)

₩

Can be used as a **guide** for detecting the QCD CEP.

 Basic strategy: Accurate measurements of FSS exponent q̃ (intermittency analysis) and corresponding freeze-out parameters (µ_B, T) in A+A collisions with 25 < A < 50.

Sac

√s ≈ 17 GeV seems to be the appropriate beam energy for approaching μ_c. Peripheral collisions can be used for fine changes in T allowing the entrance into the FSS region.

For A+A collisions at $\sqrt{s} = 17.2$ GeV we propose:

Accurate measurements of (\tilde{q}, μ_B, T) in central collisions for 25 < A < 32.

Accurate measurements of (\tilde{q}, μ_B, T) in peripheral collisions for 32 < A < 50.

Prediction: Strong intermittency effect in peripheral Ar+Sc collisions at $\sqrt{s} \approx 17$ GeV (NA61/SHINE experiment).

(See N.G. Antoniou, F.K. D., arXiv:1802.05857 [hep-ph])

Thank you!

æ

э

DQC