BM@N Studies of Baryonic Matter at BM@N and MPD NICA experiments JINR

M.Kapishin

NICA Heavy Ion Complex

BM@N: heavy ion energy 1 - 4.5 GeV/n, beams: p to Au, Intensity up ~10⁷ /s (Au)

MPD / NICA: Au+Au $\sqrt{s_{NN}}$ = 4 – 11 GeV, Luminosity~10²⁷ /cm²/s

M.Kapishin

Heavy Ion Collision Experiments

I. In A+A collisions at Nuclotron energies:

Opening thresholds for strange and multistrange hyperon production

10-3

EC+C Ni+Ni

→ strangeness at threshold

Need more precise data for strange mesons and hyperons, multi- variable distributions, unexplored energy range

Collective flows v₁, v₂

II. In *p+p*, *p+n*, *p+A* collisions:

Adron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

BM@N

M.Kapishin

Heavy-ions A+A: Study of the EoS with strangeness

The nuclear dynamics is defined by the
 EoS (via density dependent NN-interaction)

Observables sensitive to EoS: collective flow (v₁,v₂,...) particle ratios

Direct information – proton v₁,v₂ Alternative information – via strangeness

□ Experience from SIS and AGS : ratio of K⁺ yield Au+Au/C+C at SIS energies and proton v₁,v₂ favor a soft EoS (somewhat sensitive to the details of models)

Density dependence of the EoS can be studied in BM@N by a beam energy scan

Study of EoS: Collective flow of identified particles

Azimuthal angle distribution: $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$

Nuclear incompressibility: $K = 9\rho^2 \delta^2(E/A)/\delta\rho^2$

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

M.Kapishin

NICA Heavy-ions A+A: Hypernuclei production

BM@N

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

Maximal yield predicted for $\sqrt{s}=4-5A$ GeV (stat. model) (interplay of Λ and light nuclei excitation function)

BM@N / MPD energy range is suited for search of hyper-nuclei

M.Kapishin

Explore high density baryonic matter

Baryonic densities in central Au+Au collisions

I.C. Arsene at al., Phys. Rev. C75 (2007) 34902.

M.Kapishin

NICA QCD matter at MPD / NICA energies

- maximum of net baryon density density frontier
- > maximum of K^+/π^+ ratio
- > maximum of Λ/π ratio
- maximum yield of hyper-nuclei
- transition from Baryon to Meson dominated system
- \succ maximum of Λ polarization
- 1-st order transition & mixed phase creation
- Critical Endpoint ?

- EOS at high net baryon density (BM@N + MPD)
 - collective flow of identified particles
 - excitation function of (multi)-strange hyperons and strange mesons
- Y-N and Y-Y interactions in dense nuclear matter (BM@N + MPD)
 - yields of single and double A-hypernuclei
- Onset of chiral symmetry restoration at high ρ_B(MPD)
 - in-medium modifications of hadrons: $\rho, \omega, \phi \rightarrow e^+e^-$
 - di-leptons at intermediate invariant masses: 4 $\pi \rightarrow \rho \text{-}a_1$ chiral mixing
- Phase transition from partonic to hadronic matter (MPD)
 - excitation function of multi-strange hyperons and charm (J/ ψ , D)
 - Λ polarization
- search for QCD Critical Point (MPD)
 - event-by-event fluctuations & correlations

Nuclotron and BM@N beam line

26 elements of magnetic optics:

- \rightarrow 8 dipole magnets
- \rightarrow 18 quadruple lenses

Requirements for Au beam:

Minimum dead material

 \rightarrow need to replace air intervals / foils with

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

• Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions

• Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors

• ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus

- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

M.Kapishin

GEM tracker: acceptance / momentum resolution / detection efficiency

Momentum resolution / detection efficiency

BM@N

M.Kapishin

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm^2 and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker Program:
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF
- \rightarrow Gamma and multi-gamma states identified in ECAL

+ analyze data from previous technical runs with Deuteron and Carbon beams of 3.5 - 4.6 GeV/n

BM@N set-up in Ar, Kr run, March 2018

CSC chamber

ToF-400 installation

BM@N

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

BM@N setup behind magnet, 2018

GEM and Si detectors for central tracker BM@N

- 7 GEM detectors of 163 x 45 cm² are produced at CERN workshop
- 2-coordinate Si strip detector with pitch of 95/103 μ m, full size of 25 x 25 cm²
- ✓ detector combined from 4 subdetectors arranged around beam
- ✓ + two smaller vertex Si strip detectors

M.Kapishin

Event display of Λ decay in C+C collision BM@N

 $\Lambda \rightarrow p\pi^{-}$ decay reconstruction in GEM + Si tracker in C+C interaction, **March 2017**

To improve vertex and momentum resolution and reduce background under Λ :

- Need few planes of forward Silicon detectors \rightarrow 3 planes used in last run
- Need more GEM planes to improve track momentum reconstruction Methodical Paper published in PEPAN Letters, v.15, p.136, 2018(2): First results from BM@N technical run with deuteron beam 19

M.Kapishin

ToF-400 and ToF-700 based on mRPC

BM@N

MPD / CBM hadron ZDC calorimeter

CBM modules MPD modules E_{dep} [GeV] dE/dx scintillator to resolve central / peritheral interactions 15x15 a Modern technics; Light yield ~x10 higher; **Detection of low energies;** Stable operation at high count rates; 80 **Experience in operation for later MPD/CBM** experiments CBM module in BM@N 40

Motivated team

MPD FHCAL modules

BM@N A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

M.Kapishin

JINR (Dubna): BM@N **Israel:** Tel Aviv University Germany: TUD and GSI USA: MIT FRANCE: CEA

Objectives:

- identify 2N-SRC events with inverse kinematics
- study isospin decomposition of 2N-SRC
- study A-2 spectator nuclear system

BM@N BMN & SRC set-up

Cuts

|θ_{1,2}-30°|<6.5° |Δφ_{1,2}|<7.5° |s,t,u|>2 (GeV/c)²

P_{miss} >0.275 GeV/c

Trigger: T0 · T1 · T2 · TC1 · TC2 Signal rates for 14 days of data taking

Within LAND acceptance

First SRC @ BMN run in March 2018

M.Kapishin

Beam parameters and setup at different stages of BM@N experiment

BM@N

M.Kapishin

BM@N present status and next plans

- BM@N scientific program comprises studies of nuclear matter in intermediate range between SIS and NICA/FAIR
- BM@N technical runs performed with deuteron and carbon beams at energies T₀ = 3.5 - 4.6 AGeV and recently with Ar beam of 3.2 AGeV and Kr beam of 2.3 AGeV
- Measurement of Short Range Correlations performed with inverse kinematics: C beam + H₂ target
- Major sub-systems are operational, but are still in limited configurations
- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed

Major BM@N plans for Au+Au run in 2020:

- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup
- Extend GEM central tracker and CSC outer tracker to full configuration
- Install MPD / CBM type of hadron ZDC calorimeter
- Implement vacuum beam pipe through BM@N setup

M.Kapishin

NICA Collider

45 T*m, 4.5 GeV/u for Au⁷⁹⁺

RF21 RF31 RF11 PU-Y PU-L Beam PU-X [4] (9) [4] (11) [1] (9) Dump1 (5.6) (5.6) (7.5)Inj1 RF Ring 1 MS K 503,04 Ring circumference, m [3] [3] Number of bunches 22 r.m.s. bunch length, m 0,6 0,35 *β*, *m* max. int. Energy, Gev/u 11,0 1,6 *r.m.s.* ∆p/p, 10-3 1800 IBS growth time, s <u>1</u>x10²⁷ Luminosity, cm⁻² s⁻¹ CHANNE WIN RF32 RF12 MPD **RF22** [4] [1] [4] lnj2 K-YK-L ECool Double aperture magnets: **RF Pino** Beam [2] [2] [6] Dump2 dipole & quadrupole K-X [2] prototypes Au(+79) ion mode

M.Kapishin

NICA Civil Construction

September 2018

readiness for equipment installation in the MPD Hall - 2019

M.Kapishin

Multi-Purpose Detector (MPD)

NICA

tracking: up to $|\eta| < 1.8$ (TPC) PID: had., e, γ (TOF, TPC, ECAL) Reaction: centrality & plane determination (FHCal) Stage 1 (2020): TPC, TOF(barrel), ECAL(barrel), FHCAL, FFD

Stage 2 (2023):

M.Kapishin

Magnet production: ASG (Genova) & Vitkovice HM

machine is winding a SC solenoid

Time Projection Chamber (TPC) – basic tracker

31

M.Kapishin

Fast Forward Detector – (FFD)

array of 20 modules Planacon MCP-PMTs 80 +20 channels

Al housi

Optic

Pb 10- m

M.Kapishin

FHCAL: determination of reaction plane and centrality

2 x 45 modules (15 x 15 cm² each) located left and right at ~3.2 m from the IP)

WLS-fibers & SiPM

acceptance: 2.2<|η|< 4.8

 $\sigma(E)/(E) = 53\%/\sqrt{E(GeV) + 10\%}$

transverse granularity allows to measure:

- the reaction plane with accuracy ~ 20⁰-30⁰
- the centrality with accuracy below 10%.

M.Kapishin

BM@N / MPD experiments

Electromagnetic calorimeter: ECAL

MPD: Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, UrQMD

phase-space

M.Kapishin

MPD: Prospects for study of di-leptons

Event generator: UrQMD+Pluto (for the cocktail) central Au+Au @ 8 GeV
PID: dE/dx (from TPC) + TOF (s ~100 ps) + ECAL

MPD: Hyper nuclei

Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks
³ ∧H	9 · 10 ⁵
⁴ ∧He	1 · 10 ⁵

kick-off meeting on formation of the MPD and BM@N Collaborations

carried out in Dubna on 11-13 April, 2018

https://indico.jinr.ru/conferenceDisplay.py?ovw=True&confId=385

The second meeting will take place on 29-31 October, 2018

M.Kapishin

NICA complex with two experiments BM@N and MPD has a potential for competitive research in the field of baryon rich matter

The BM@N experiment (stage 0) has already started data taking

Preparations of MPD experiment is going close to the schedule

Collaborations of both experiments BM@N and MPD are permanently growing

Thank you for attention!

M.Kapishin