$K^*(892)^0$ production in P+P interactions at 158 GeV/c from NA61/SHINE

 $\label{eq:Angelika} \mbox{Angelika Tefelska} \ ^{1} \mbox{for the NA61/SHINE Collaboration}$

¹Warsaw University of Technology

Critical Point and Onset of Deconfinement 2018

MOTIVATION

time

 $K^*(892) = d\bar{s}$ meson according to PDG 2018

- Mass $m = 895.55 \pm 0.20 \text{ MeV}$
- Width $\Gamma = 47.3 \pm 0.5$ MeV
- $\tau = 4.17 \text{ fm/c}$

- The resonance yield is affected by regeneration and rescattering process
- Momenta of K* decay products can be modified due to elastic scatterings during the rescattering process → Suppression of observed K* yield
- K*/K⁻ or K*/K⁺ → time between chemical and kinetic freeze-outs, properties of hadron gas phase (C.Blume, APP B43, 577-586, 2012)

$$\frac{K^*}{K}\bigg|_{kinetic} = \frac{K^*}{K}\bigg|_{chemical} e^{-\frac{\Delta t}{\tau}} \quad (1)$$

Assumption: no regeneration process
Ratio for kinetic freeze-out from
Pb+Pb interaction
Ratio for chemical freeze-out from
p+p interaction

MOTIVATION

 $K^*(892) = d\bar{s}$ meson according to PDG 2018

- Mass $m = 895.55 \pm 0.20 \text{ MeV}$
- Width $\Gamma = 47.3 + 0.5 \text{ MeV}$
- $\tau = 4.17 \text{ fm/c}$

- mass and/or width changes for A+A interactions → chiral symmetry restoration (G.E. Brown, M. Rho, PRL 66, 2720, 1991)
- the reference data to Blast-Wave models and statistical Hadron Resonance Gas models
- resonance measurements in p+p interaction are useful as reference for system size dependence study

Event selection

- inelastic p+p
- good quality of fitted vertex
- interaction in the target

KINEMATICAL CUTS

- p >3 GeV/c
- \bullet $p_T < 1.5 \text{ GeV/c}$

Track selection

- from main vertex
- good momentum reconstruction
- number of points in TPCs
- PID cut: $\rightarrow dE/dx \sim K^+$ and π^-

STATISTICS - P+P @ 158 GeV/C

- $N_{events} = 27.9 \cdot 10^6$
- $N_{tracks} = 106.1 \cdot 10^6$ in accepted events

(B) π^{-} (3.0· $\sigma_{\pi^{-}}$)

SIGNAL EXTRACTION

Signal extraction was done in two steps:

Extracting the resonances and correlated background:

$$f(m_{inv}) = a \cdot T_{res}^{MC}(m_{inv}) + b \cdot T_{mix}^{DATA}(m_{inv}) + c \cdot BW(m_{inv})$$
(2)

where:

- $T_{\rm res}^{MC}$ resonance background template from reconstructed Monte Carlo data ($K^+\pi^-$ pairs, which come from resonance decay with exception of $K^*(892)^0$)
- T_{mix}^{DATA} uncorrelated background from mixed events

SIGNAL EXTRACTION

BW(m_{inv}) - Breit-Wigner distribution:

$$BW(m_{inv}) = A \cdot \frac{\frac{1}{4} \cdot \Gamma^2}{(m_{inv} - m_o)^2 + \frac{1}{4}\Gamma^2}$$
(3)

• a, b, c - normalisation const (a+b+c=1)

Extracting the residual background by using the 2nd order polynomial

STANDARD METHOD VS. TEMPLATE METHOD

- Standard method: background described by mixed events only
- Template method: described on previous slides

Double Differential Spectra

- Results refer to inelastic p+p interactions. They are corrected for detector acceptance and experimental biases
- First 2D (y vs p_T) spectra for p+p @ 158 GeV/c

Double Differential Spectra

• Fit: $f(p_T) = A \cdot p_T e^{\frac{-\sqrt{p_T' + m_{PDG}'}}{T}} \to \text{extrapolation to } p_T = +\infty \to \text{tail} \sim 1\%$

TRANSVERSE MASS SPECTRUM AT MID-RAPIDITY

• The fit: $f(m_T) = A \cdot e^{-\frac{m_T}{T}}$

FIT RESULTS

	NA61/SHINE	NA49 (PR C84, 064909, 2011)
T_{K*} [GeV]	$0.1624 \pm 0.0029 \pm 0.0059$	$0.166{\pm}0.011{\pm}0.010$

RAPIDITY SPECTRUM

- First p_T -integrated $\frac{dn}{dy}$ spectra for p+p @ 158 GeV/c
- Gaussian fit: $f(y) = a \cdot e^{-\frac{y^2}{2\sigma_y^2}}$ • The $\langle K^* \rangle$ is calculated by
- The \(\begin{align*} \epsilon * \display \) is calculated by summing points (only for y>0) and adding integral values in non-measured area

Mean multiplicity of $K^*(892)^0$

		NA61	NA49
Ì	$\langle K^*(892)^o \rangle$	$0.08058 \pm 0.00059 \pm 0.00260$	$0.0741\pm0.0015\pm0.0067$

NA49 results from PR C84, 064909, 2011

Comparison of $K^*(892)^0$ production with Hadron-Resonance Gas Model

- HRG by F.Becattini et al. (PR C73, 044905, 2006)
 - Fit B; uses "standard" γ_s ; for p+p Ξ and Ω baryons excluded from fit
 - Fit A: γ_s replaced by $\langle s\bar{s}\rangle$; for p+p ϕ meson excluded from fit
- HRG by V.Begun et al. (arXiv:1805.01901)
 - p+p: GCE with φ meson included
- Deviation from HGM model increases with increasing system size
- Small p+p collision can be described by GCE
- p+p data can be described by CE only for fit A (ϕ meson excluded from fit)

System size dependence of $K^*(892)^0$ to charged kaon ratio

- Results from:
 - NA49 K*: PR C84, 064909, 2011
 - NA49 K^{+/-}: EPJC 68, 1, 2010; PRL 94, 052301, 2005; PR C66, 054902, 2002
 - NA61/SHINE $K^{+/-}$: EPJC 77. 671. 2017
- Time between chemical and kinetic freeze-outs (assuming no regeneration processes):
 - $3.8 \pm 1.1 \; \text{fm/c for} \; K^*(892)^0/K^+$
 - 3.3 ± 1.2 fm/c for $K^*(892)^0/K^-$

- Δt at SPS $> \Delta t$ at RHIC (2 \pm 1 fm/c, STAR, PR C71, 064902, 2005) suggesting that regeneration effects may start to play significant role for higher energies
- ullet Regeneration may happen also at SPS o obtained Δt is lower limit of time between freeze-outs

K^{*0} Mass and Width

- Results from:
 - NA49: PR C84, 064909, 2011
 - ALICE: PR C91, 024609, 2015
 - STAR: PR C71, 064902, 2005
- The mass and width were calculated as average value in range $y \in (0.0; 1.5)$ from three bins
- NA61: The K*0 mass and width agree with PDG values
- NA61: For K*0 no mass shift or width broadening

SUMMARY

- The first 2D (y and p_T) and p_T -integrated rapidity spectra of K^* meson are obtained for p+p @ 158 GeV/c
- 4π acceptance NA61 results consistent with the NA49 $(0 < p_T < 1.5 \text{ GeV/c})$ results but with better accuracy
- The $\langle K^*(892)^o \rangle$ can be described by HGM CE fit A (ϕ meson excluded) and by HGM GCE model with ϕ
- \bullet Time between chemical and kinetic freeze-outs at SPS is higher than at RHIC \to regeneration effects may start to play significant role for higher energies
- \bullet The mass and Γ agree with the PDG values. No observed mass shift or width broadening
- Plans: $\bar{K^*}$ for p+p at 158 GeV/c, K^* and $\bar{K^*}$ for p+p at lower SPS energies

ACKNOWLEDGEMENTS

This work was supported by the National Science Centre, Poland under grant no: 2017/25/N/ST2/02575

Back-up

Transverse mass spectra

• The fit: $f(m_T) = A \cdot e^{-\frac{m_T}{T}}$