Experimental summary Selected topics of CPOD conf.

Seweryn Kowalski

Outline

- Experimental facilities current status
- Onsets
 - deconfiment
 - fireball
- Search for critical points
- Probe of the EOS
- Other topics
- Hardware developments and experimental measurements plans

Phase diagram

Scan of the phase diagram world status

J-PARC-

HI

J-PARC

JHITS

2025

1.9 -

6.2

energy

HIAF

Huizhou

CEE

2024

1.8 - 2.7

energy

Current & future measurements

Scan of the phase diagram world status

Collision energy

Interaction rates

Scan programs data taking campaigns

BES I @ RHIC

Beam Energy Scan (BES I) at RHIC: √s_{NN} ~ 7.7- 50 GeV

- (+54.4, 62.4, 130, 200 GeV) 1. Search for QCD critical point
- 2. Search for signals of the 1st order phase transition
- 3. Search for turn-off of sQGP signatures

Au+Au

	√s _{NN} (GeV)	Events (10 ⁶)	Year	Step-by-step on the QCD Phase Diagram
	200	350	2010	200 GeV
	62.4	67	2010	300 S2.4 GeV
	54.4	1300	2017	
	39	39	2010	200 11.5 GeV
	27	70	2011	C 55 Get Care
	19.6	36	2011	100 - Change
	14.5	20	2014	Hadronic Gas
	11.5	12	2010	0 250 500 750 1000
100	7.7	4	2010	Baryon Chemical Potential _{Jue} (MeV)
ST	AR			

NA61/SHINE @ CERN SPS

NA61/SHINE strong interactions program

Comprehensive scan in the whole SPS energy range (beam momentum 13A - 150/158A $GeV/c \Leftrightarrow \sqrt{s_{_{NN}}}= 5.1 - 16.8/17.3 GeV$) with light and intermediate mass nuclei

beam momentum [A GeV/c]

- Search for the critical point → search for non-monotonic behavior of CP signatures: fluctuations of N, average p_T, etc., intermittency, when system freezes out close to CP
- Study of the properties of the onset of deconfinement → search for the onset of the horn/kink/step/dale in collisions of light nuclei
- Study high p_T particles (energy dependence of nuclear modification factor)
- Extended by Pb+Pb → open charm measurements, collective effects, etc.

Onset of the deconfiment (phase transition)

NA61/SHINE – horn

Energy dependence of K^+/π^+

"the horn" plot

NA61/SHINE – step

FIOW @ STAR indication that hadronic interaction become dominant at lower beam energies

BES I: v₂ difference between particle and anti-particle

Flow @ STAR

indication that hadronic interaction become dominant at lower beam energies

 ϕ meson v₂

STAR: PRC 88 (2013) 14902 Phys. Rev. C 93, 014907 (2016) Phys. Rev. Lett. 116, 062301 (2016)

 meson v₂ falls off the trend from other hadrons at 11.5 GeV, but <u>very low</u> statistics

Flow @ STAR

net-proton and net- Λ show double sign change in midrapidity dv₁/dy, as predicted for the possible 1_{st} order phase transition, indication of a softening of EOS around 11.5-19.6 GeV

Directed flow (v1) of identified particles

 v_1 probes early stage of collision, sensitive to compression, should be sensitive to 1st order phase transition; change of sign in the slope of dv_1/dy for protons has been proposed to be a probe to the softening of EOS and/or the first-order phase transition ...

STAR

- Net-proton v₁ slope at midrapidity changes sign twice between $\sqrt{s_{NN}}$ = 7.7 11.5 GeV
- EOS softest point ? (1st order phase transition ?)

but: - dip at different position than model

 error bars for other particles and different centralities are large – more statistics needed and better RP resolution needed

Net-protons = directed flow of transported baryons Double sign change in dv₁/dy Not seen in net-kaons Results not yet reproduced by theory

Flow @ NA61/SHINE

The first NA61 results on anisotropic flow in Pb+Pb at **30***A* GeV/*c* were obtained. Protons dv₁/dy change sign for centrality of about $50\% \rightarrow$ another tool to study the properties of the onset of deconfinement

NA61/SHINE centrality dependence of dv_1/dy in Pb+Pb at $\sqrt{s_{NN}} = 7.6$ GeV

(30A GeV/c beam momentum; according to K⁺/ π ⁺ "horn" in Pb+Pb this is the energy of the onset of deconfinement)

NA61 fixed target setup → tracking and particle identification over wide rapidity range Flow coefficients are measured relative to the spectator plane estimated with Projectile Spectator Detector (PSD) → unique for NA61

BES @ RHIC

indication that hadronic interaction become dominant at lower beam energies

- R_{CP} increases from suppression at 62.4GeV to enhancement at 7.7 GeV, as expected (energy density at low energies becomes to low to produce a sufficiently large and long-lived QGP) HIJING (no jet quenching, but including Cronin effect though k_T broadening) resembles $\sqrt{s_{NN}}$ dependence at low energies (other effects can contribute e.g. radial flow, coalescence, ...)

Cronin and other enhancement effects <u>compete</u> with jet quenching $R_{cp} > 1$ does <u>not</u> automatically lead to conclusion that QGP is not formed **STAR**

Flow @ HADES

Radial flow

Global freeze-out parameters fit well into trend of world data

 \Box T_{kin} < T_{chem} also at low energies

Fit: Blast wave model with linear radial flow velocity profile

 \Box T_{kin}=66±8 MeV, < β_r >=0.34±0.04

Onset of the fireball (transition to equilibrium)

NA61/SHINE – two onsets in nucleus-nucleus collisions

System size dependence of K*/\u03c0* ratio at mid-rapidity

Be+Be results are close to p+p

Rapid change from p+p and Be+Be to heavy Pb+Pb

p+p: NA61, EPJC 77, 671, 2017 Pb+Pb: NA49, PR C77, 024903 2008; PR C86, 054903, 2012

 Hadron Resonance Gas model in CE formulation (γ_s=1) cannot describe NA61 data

Begun, Gorenstein, Motornenko, Vovchenko [in preparation]; see also arXiv:1805.01901, arXiv:1512.08025

9

Onset of deconfinement

beginning of QGP formation Onset of fireball

beginning of formation of a large cluster which decays statistically

 ≈ 10 0 nset of $0 \text{$

A (atomic mass)

Search for critical point

Non-monotonic energy dependence of the 4th order netproton correlation function suggestive signs of critical fluctuations

23

Higher moments in BES-I

Excitation function for net-proton high moments ($\kappa\sigma^2$) in 5% most central Au+Au $\sigma^2 = \langle (N - \langle N \rangle)^2 \rangle$ STAR, PRL 112 (2014) 032302, CPOD2014, QM2015 $S = \langle (N - \langle N \rangle)^3 \rangle / \sigma^3$ Net-Proton $\kappa = \langle (N - \langle N \rangle)^4 \rangle / \sigma^4 - 3$ 4 0.4<p_<2 (GeV/c),lyl<0.5 • 0-5% 5-10% 3 Non-monotonic behavior 70-80% - Peripheral collisions - smooth trend 20 X 2 UrQMD, 0-5% - UrQMD (no CP): shows suppression at low energies which is due to baryon number conservation baseline 0 STAR Preliminary \sqrt{s} 10 20 100 200 6 M.A.Stephanov, PRL 107, 052301 (2011) √s_{NN} (GeV) Will the oscillation pattern emerge at lower energies ? STAR FXT data

Grazyna Odyniec/LBNL - CPOD 2018, September 2018, Corfu, Greece

Proton Number Fluctuations

Ist time this kind of analysis in fixed-target experiment at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$

- Detailed systematic study of experimental and instrumental effects:
 - E-b-e changes of efficiency
 - Corrections for volume fluctuations
 - \Box Proper selection of p_t-y bite
 - Protons bound to nuclei

Impact of the effects is being scrutinized

Garg et al., J. Phys. G: Nucl. Part. Phys. 40 (2013) A. Bzdak, V. Koch, PRC 86 (2012); X. Luo, PRC 91 (2015); M. Kitasawa, PRC 93 (2016) V. Skokov *et al.*, PRC 88 (2013) 034911; A. Rustamov *et al.*, NPA 960 (2017) 114

Unfolding + vol. flucs. corr.

E-b-e eff corr. of factorial moments + vol. flucs. corr.

Comparison to NA49 A+A at 158A GeV/c within NA49 two different acceptances

System size dependence of $\Sigma[P_T, N]$ at 150/158A GeV/c: NA49 and NA61 points show consistent trends. $\Delta[P_T, N]$ (not shown here) is more centrality width sensitive (points are scattered)

- Fluctuations are larger for larger rapidity interval
- Increase of Σ from p+p to Ar+Sc / Si+Si.
 We are waiting for Xe+La and Pb+Pb results from NA61 34

Intermittency

Indication of intermittency effect in middle-central Ar+Sc at 150A GeV/c was shown→ first possible evidence of CP signal in NA61/SHINE

Proton intermittency - comparison of NA61 and NA49 at 150(8)A GeV/c

Older intriguing results for intermediate mass systems at 150(8)A GeV/c

- Intermittency signal of di-pions in Si+Si NA49, PR C81, 064907, 2010
- Increased transverse momentum and multiplicity fluctuations in Si+Si and C+C -Grebieszkow (for NA49), NP A830, 547C, 2009; NA49, PR C92, 044905, 2015

Fluctuations @ LHC

The measured second order cumulants of net-protons at ALICE are, after accounting for baryon number conservation, in agreement with the corresponding second cumulants of the Skellam distribution.

Net-protons, acceptance dependence

Contribution from global baryon number conservation

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Probing of the EOS

EOS – higher Vn harmonics n>2

Triangular flow $v_3{\{\psi_{RP}\}}$ and EoS at SIS18 compared to UrQMD

Note: $v_3 \{\psi_{RP}\}$ w.r.t reaction plane $v_3 \{\Psi_{RP}\} = \langle \langle \cos 3(\varphi - \Psi_{RP}) \rangle \rangle$

 \Box Predicts high sensitivity of v_3 on EoS \rightarrow Strong separation power

UrQMD3.4 P. Hillmann, J. Steinheimer, M. Bleicher, arXiv:1802.01951

From gravitational waves to EOS

LRezzolla+2016

-23.5

0

2

f [kHz]

3

39

5

4

Other topics

Off-diagonal cumulants

Off-diagonal cumulants of net-particle distributions

Measurement of the off-diagonal cumulants up to the 2nd order between net-p, net-K, and net-Q -> additional constraints of chemical freeze-out conditions *A.Majumder et al., Phys. Rev. C* 74 (2006) 05490: *A.Chatterjee et al., J.Phys. G43* (2016) 125103

- correlations between net-p and net-K are positive at lower energies and negative at higher
- correlations in (net-Q and net-K) and (net-Q and net-p) are above Poisson, thermal (HRG) and non-thermal (UrQMD) model calculations

see talk by Arghya Chatterjee at this conference

Space time evolution of the particle production process

Space time evolution of the particle production process System size dependence of K*(892)⁰ to charged kaon ratio at 158A GeV/c

- Δt at SPS > Δt at RHIC (2 ± 1 fm/c, star, pr c71, 064902, 2005) suggesting that regeneration effects may start to play significant role for higher energies
- Regeneration may happen also at SPS → obtained <u>At is the lower limit of time</u> between freeze-outs

Results from Au+Au collisions suggest a "thermalized" strongly interacting medium created at √s_{NN}=2.42 GeV:
 Strangeness production consistent with equilibrium at SIS18
 Thermal origin of e⁺e⁻ excess spectrum at low energies

Thermal dielectrons at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$

Excess yield fully corrected for acceptance

HADES Collab., submitted CG FRA Endres et al.: PRC 92 (2015) 014911 CG GSI-Texas A&MTG et al.: Eur.Phys.J.A52 (2016) no.5, 131 CG SMASH: J. Staudenmaier et al., arXiv:1711.10297v1 HSD: Phys. Rev. C 87, 064907 (2013) Strong broadening of the in-medium ρ due to direct ρ-hadron scattering

$\sum_{h}^{n^{*}} \sum_{h}^{\gamma^{*}}$

- Thermal rates folded over coarse-grained UrQMD medium evolution works at low energies
- Supports baryon-driven medium effects at SPS and RHIC (LHC)!

Space time evolution of the particle production process

π^+/π^- ratio in centrality selected Ar+Sc at 150A GeV/c

π_{+}/π_{-} ratio and spectator-induced electromagnetic effects

- Repulsion of π⁺ is the strongest for pions with rapidities close to beam rapidity (spectators) and with low p_T
- First observation of spectator-induced EM effects in small systems at SPS
- Similar effect seen in intermediate centrality Ar+Sc and (NA49) peripheral Pb+Pb

PID for V0

Identity Method for Λ

27

similar to the Identity method for 2 particle species (signal and background in this case)

ALICE, QM18

A. Rustamov, CPOD2018, 24-28 September 2018, Corfu, Greece

Background estimation

An iterative method for estimation of the combinatorial background

- CB is generated by random rotations of tracks around symmetry axis
- All reconstructed pair combinations are split into signal and background using an iterative procedure
- \Box Carried out in M-p_T-y- θ space
- Kinematics of a single track contributing to the signal is accessible

- Validation of the method:
 - with simulated data
 - with narrow states Λ , K°_s in real data

G. Kornakov et al., arXiv:1808.05466 [physics.data-an]

Hardware developments and experimental measurements plans

STAR Detector Upgrades

STAR Fixed Target & BES II

Why a Fixed-Target Program?

Grazyna Odyniec/LBNL - CPOD 2018, September 2018, Corfu, Greece

Extends energy range from $\sqrt{s} = 7.7$ down to 3 GeV (μ_B : 420 MeV \rightarrow 720 MeV)

Dedicated short runs more efficient, successful test completed

Precision investigation with new techniques and the same detector

Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _s (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721
AMPEN				

BES II Proposal

34

Mechanisms of charm production – validating models

- Models (implementing sequential melting + regeneration effects + initial state effects + ...) try to describe charmonium states; cross-section for charm quarks production is an important parameter, but:
- Predictions of different models differ by two orders of magnitude!

BM@N @ NUCLOTRON

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

→ fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N / MPD experiments

 Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions

 Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors

 ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus

 ZDC calorimeter to measure centrality of AA collisions and form trigger

 Detectors to form T0, L1 centrality trigger and beam monitors

Electromagnetic calorimeter for y,e+e-

Beam parameters and setup at different BM@N stages of BM@N experiment

Year	2016	2017 spring	2018 spring	2020	2021 and later				
Beam	d(↑)	С	Ar,Kr, C(SRC)	Au	Au,p				
Max.inten sity, Hz	0.5M	0.5M	0.5M	1M	2-5M				
Trigger rate, Hz	5k	5k	10k	10k	20k→50k				
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 small Si planes	7 GEM full planes + small + large Si planes	7 GEM full planes + small + large Si planes				
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics				
M.Kapishin BM@N / MPD experiments									

BM@N @ NUCLOTRON

reconstructed

NICA

NICA

NICA complex with two experiments BM@N and MPD has a potential for competitive research *in the field of baryon rich matter*

FAIR

FAIR: Research Programmes

The CBM experiment at FAIR

- Fixed-target spectrometer
- Hadron, electron and muon ID
- Large (central to forward) acceptance
- Tracking in dipole field
- Electron ID after tracking
- Extreme rate capability: up to 10⁷ / s
- Trigger-less readout
- Event building and selection on CPU in real-time

Now under construction; Full-system test (mCBM) February 2019

2024 commissioning with SIS-100 beam

19

HIAF

HIAF

J-PARC-HI

- System size and energy scans
- Onset of the deconfiment observation of the changes in many observables
- Onset of the fireball
- Search for critical point
- New techniques for EOS constrain
- New facilities running at the end of the first quarter of the twentyfirst century
- Look for better quality data

Thank you

HADES STAR

HADES STAR J-PARC-HI

HADES STAR J-PARC-HI STAR FXT STAR BES II

HADES STAR J-PARC-HI STAR FXT STAR BES II BM@N MPD

HADES STAR J-PARC-HI STAR FXT STAR BES II BM@N MPD CEE

5 (Net-)protons HADES 0-10 % D HADES HADES 30-40 % 4 STAR **J-PARC-HI** STAR 0-5 % 0 **STAR FXT** 3 STAR 30-40 % ÷ **STAR BES II** σ^2 BM@N STAR BES II BM@ 2 MPD FXMPD $\mathbf{\Sigma}$ CEE CBM ÷ 0 2 3 4 5 6 20 30 100<u>20</u>0 10 S_{NN}