R2M – Radiation To Material Material testing and external facilities

R2E Annual Meeting

DEC, 11-12TH | CERN, 774/R-013

indico.cern.ch/event/760345/

EN/STI/TCD Elisa Guillermain Marco Calviani

Why testing equipment and material ?

>Consequences of equipment radiation damage :

- Machine unavailability
- Unforeseen replacement costs

Equipment qualification allows :

- Selecting the most resistant equipment / materials
- Meeting equipment lifetime constraints
- Anticipate failures (prevention)
- Avoiding ALARA issues (radiation protection)

Contents

- WP R2M scopes
- Support in assessing radiation damage to CERN accelerators equipment
- Coordination of CERN wide high doses irradiation tests in external facilities
- Long-term know-how on material radiation damage effects
- Progress overview
- Outlook and prospects

Which material(s)

Which radiation is
representative
(Gamma ? Particles ?)

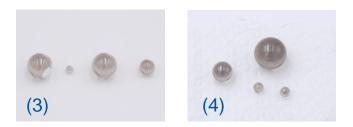
- > Materials = polymers, glass, etc
 - All equipment but electronics and beam intercepting devices (BID)
 - Materials damage due to
 - TID (Total Ionizing Dose)
 - DD (Displacement Damage)
 - Cumulative effects :
 - Long-term damage!
 - Accelerated ageing tests

- CERN environment = mixed particle field
 - Most of irradiation tests performed with gammas
 - TID damage depends on the dose (Gy), not the radiation type
 - Can reach high dose rate with large volume
 - Do not activate samples
 - Particles irradiation required in some cases, depending on material
 - Examples: crystals, ceramic, piezo (?)

Irradiation tests: Few examples

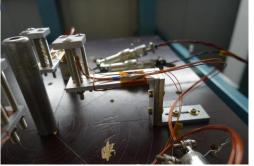
Test and drain valve (SPS fire safety upgrade): (1) not irradiated, (2) 500 kGy, and (3) 3 MGy Gamma irradiation in BGS facility conveyor, September / October 2018

Lead screws for LHC collimators: (1) not irradiated, (2) 5 MGy Gamma irradiation in BGS facility conveyor, September / October 2018


Irradiation tests: Few examples

Vacuum bake out jacket: (1) not irradiated, (2)10 MGy Gamma irradiation in BGS facility conveyor, May / June 2017

High index glass balls for high precision alignment optical systems:
(1) not irradiated, (2) 300 kGy, (3) 1 MGy and (4) 5 MGy Gamma irradiation in BGS facility conveyor, September / October 2018


11-12 December 2018

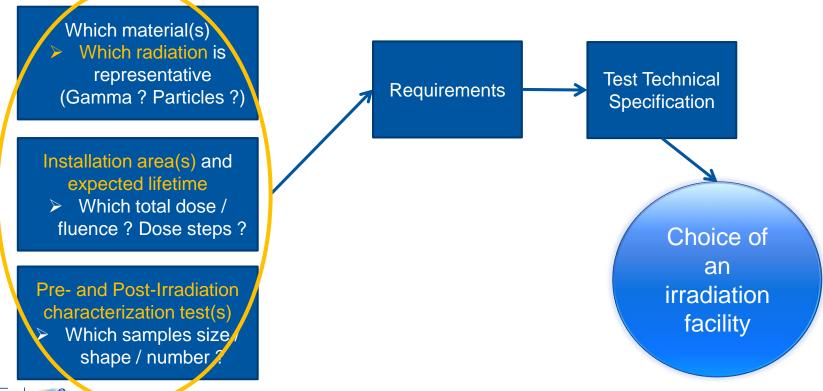
Irradiation tests: Few examples

Test of piezoelectric actuators For the UA9 Si crystal collimation goniometer

Test in Fraunhofer Gammas from ⁶⁰Co Dose of 1MGy Active Test (Also 10MGy as passive) Test in IRRAD 24 GeV protons from PS Fluence of approx. 10¹⁶ p/cm², Dose of approx. 2MGy Active Test

Which material(s)

Which radiation is
representative
(Gamma ? Particles ?)


Installation area(s) and expected lifetime
➤ Which total dose / fluence ? Dose steps ?

Radiation levels

- Radiation levels will increase to the point where material radiation physical "damage" will become (again) an issue
- More and more location and equipment concerned
- Increasing demand for high dose irradiation tests
- In the LHC -> HL-LHC
- In the injectors
- > At which total dose to perform the irradiation tests ?
 - Depends on equipment location + wished equipment lifetime
 - Support from MCWG
 - Support from the FLUKA team
 - See previous talk, and Wednesday 09:00 12:00

Some irradiation facility examples

Cumulative effect :

Need for high dose (or, high fluence) Accelerated tests :

Need for high dose rate

CERN facilities do not reach all CERN requirements... (even for electronics..)➢ Need for external facilities

Displacement Damage (DD)

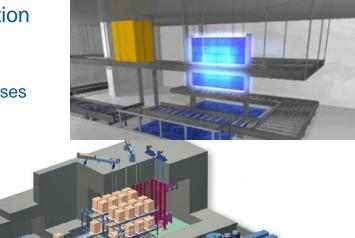
- \rightarrow Particle irradiation
- CERN in-house
 - Protons : IRRAD
 - Mixed field : CHARM
 - Tunnels (TDC2), target areas (AD)
 - New irradiation platforms under study : nTof target, ISOLDE dump
- External facilities

Total Ionizing Dose (TID)

- → Gamma irradiation ⁶⁰Co
- CERN gamma source (CC60)
 - Activity is too low for assessing material resistance
 - 20 kGy in 45 days (x10 increase in the near future)

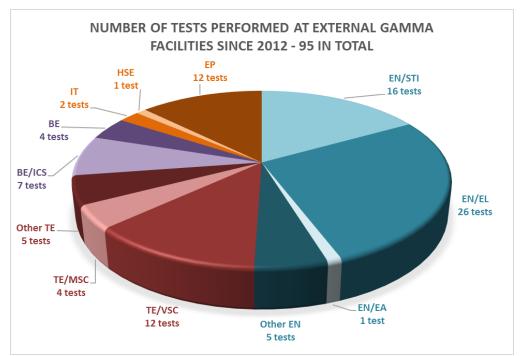
• External gamma facilities

- BGS (Wiehl in Germany)
 - through Fraunhofer INT
 - Since 2012 with R2E/R2M activities
 - 10 MGy in 45 days for large volumes
 - 30 MGy in 45 days for small volumes
- Ionisos (Dagneux near Lyon)
 - For a long time with EP dpt
 - Since 2015 with R2E/R2M activities
 - 500 kGy in 45 days



High dose gamma irradiation facilities

- External commercial facilities for large scale irradiation
 - Aimed at sterilization, decontamination, cross linking
 - Allows for large volumes (pallet)
 - Normal facility operation = large volumes and moderate doses
 - ≠ from CERN high dose irradiation
 - Planning to be done well in advance



- Irradiation tests volume
 - Depends on upgrades, scheduled maintenance, long shutdowns
 - R2M to anticipate requests and preparing facilities access in case of needs

- Number of irradiation tests performed with commercial gamma facilities since 2012 = 95 tests
 - From 100 kGy up to 100 MGy

- R2M "team" aims at
- Managing relationship with external facilities
 - Technical aspects
 - Administrative aspects
- Follow-up of irradiation tests and corresponding documentation
- Coordination of CERN material irradiation tests
 - Combination of irradiation campaigns
 - CERN wide coordination of irradiation campaigns
 - Shared irradiation time : Optimization of time and cost

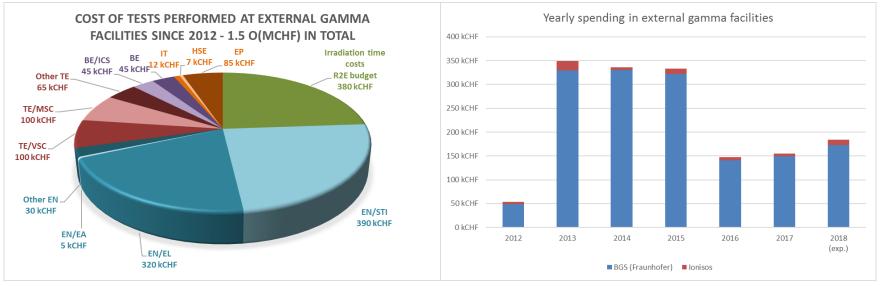
 Commercial gamma facility

•	Pal	let	irra	dia	tion
---	-----	-----	------	-----	------

Mean dose rate

• 10 kGy/h

Combined [NEO-17-064]
5 MGy
8 steps
90 days
Irradiation time = 27kCHF
Samples handling and associated costs = 45kCHF


			5 MGy			
HL tracker	PICCA	New bake	Glued	Vacuum	Silicon	O'ring
glues	(cables)	out jackets	kapton n°2	Pumps	Clamps	assemblies
15 MGy	5 MGy	15 MGy	15 MGy	15 MGy	1 MGy	15 MGy
5 steps	6 steps	5 steps	7 steps	3 steps	2 steps	6 steps

				18-115]	ned [NEO-	Combir						
					5 MGy							
					8 steps 60 days							
TOTAL					eseen 27k seen 3 x 6							
With combination	7				projects							
200 days 200 kCHF	s	Roller	L tracker	Glued HL	HL-LHC alignement	Small O'ring	O'ring	Vacuum	Glued	New bake	Optic fibre cables and	HL tracker
TOTAL	а	screws	naterial	lap joints	system		assemblies	Pumps	•	out jackets	microducts	glues
Without combination		10 MGy 2 steps	10 MGy 6 steps	15 MGy 5 steps	10 MGy 6 steps	10 MGy 6 steps	15 MGy 6 steps	15 MGy 3 steps	15 MGy 7 steps	15 MGy 5 steps	10 MGy 5 steps	15 MGy 5 steps
+ 1000 days	_				•	•						
645 kCHF												

- Shared irradiation time costs: R2E Budget Code
- "Samples handling" costs: Equipment group Budget Code
- Samples procurement, characterization tests and related analysis also from Equipment groups

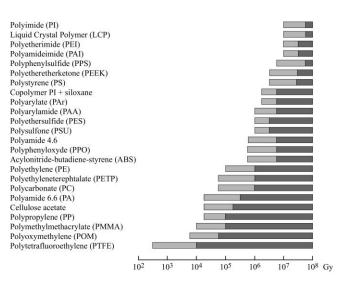
11-12 December 2018

European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

EDMS No. 1959184 The R2E Project Group Code: EN-STI MS-4440/EN/R2E

Market Survey

Technical Description Irradiation Tests


Market survey launched mid-2018 MS-4440/EN/R2E

- 25 firms contacted
 - 16 gave no feedback
 - 5 declined
- 10 firms / group of firms replied
 - Qualification on-going
- IT foreseen for 1st quarter of 2019
 - 1 MCHF over 5 years
 - 200 kCHF/year
- TS describes norms to comply with, required documentation, etc

Long-term know-how on material radiation damage effects

- CERN History with materials under radiation :
 - Late 70's \rightarrow Early 2000's :
 - Yellow books: Compilation of radiation damage test data
 - \rightarrow The bible(s) !
 - Post irradiation characterization : mechanical tests
 - In 1995
 - IS41 "The use of plastic and other non-metallic materials at CERN with respect to fire safety and radiation resistance"
 - In 2014 :
 - "Demand for radiation test campaigns (TID, DD) is steadily increasing"
 - "Time and man-power constraints are a frequent issue for equipment groups"
 - "R2M" as an R2E spin-off

mild to moderate damage, utility is often satisfactory moderate to severe damage, use not recommended

Yellow book report CERN-98-01 Compilation of radiation damage test data http://cds.cern.ch/record/357576

19

Long-term know-how on material radiation damage effects

- Documentation and Quality assurance
- Current situation
 - Technical Specification
 - Produced by the equipment group
 - Describing CERN requirements and shared with the irradiation facility staff
 - Template available in EDMS 1807333
 - Reporting
 - Irradiation report
 - Characterization report, including analysis and conclusions
 - If applicable, global report for multiple tests

- Archiving of relevant documentation
 - Share know how and results
 - Avoid redundant tests
 - Twiki collaborative website
 - EDMS structure centralized documentation to guarantee long-term documentation
- Radiation to material CERN guideline
 - Same purpose than EDMS 1740220
 "Radiation Hardness Assurance
 Procedure"

Resources

- Resources
 - 2012-2015
 - Activity held by R2E project leader
 - 2016-2018
 - Activity held by TEMP (3 year)
 - 2019
 - TEMP extended for 6 months until June 2019
 - Fellow expected as from July 2019

- In R2E C&S review (Indico 666689, 10.2017) "R2M Outlook and Strategy" talk by Marco Calviani :
 - · Long-term management of R2M+R2BID know-how would require a dedicated staff
 - Similar level of resources should be made available in equipment groups requiring R2M-related test

Conclusion

Current situation for material irradiation tests

- Increasing demand for high dose irradiation tests
- Equipment group responsible for their equipment
 - Example of TE/VSC
- R2M for expertise and support
 - Support to equipment groups = efficient preparation of the tests
 - Optimization of time and cost when combining tests
 - Centralization of archives
 - Contract set-up with external gamma facilities
- Importance of centralizing the know-how in order to avoid wasted resources and budget
 - Know-how can be lost due to non-continuous support and no long-term strategy
 - > Material irradiation testing is a key activity for CERN operation
 - Expertise on material radiation damage is essential for CERN
 - > Resources are presently limited long-term management to be clarified

22