Radiation tolerant developments in Beam instrumentation

T. Lefevre on behalf of the Beam instrumentation group

R2E Annual Meeting – December 11-12, 2018

Beam instrumentation

Outline

- Introduction
- BI rad-tolerant developments
- Common developments with EP/ESE
- Testing of rad-tolerant and COTS components

General BI considerations

- Most of BI activities are subject to R2E issues
 - Typical implementation of BI acquisition system
 - Front-End (FE) electronic in the Tunnel Back-End (BE) electronic on Surface
 - FE based on rad-hard / rad-tolerant electronics
 - True for all large BI systems: BPM and BLM in SPS and LHC
 - Typical budget split between FE/BE electronics: 50% 50%
- BI standardization
 - Encouraging common developments and 'standard' solution within the group
 - Part of an even larger effort of standardization with the BE-CO group for acquisition system and data transmission links
- Collaboration with EP BI benefiting from their ASIC design and production

BI developments strongly relies on R2E

- FLUKA simulations for an estimation of expected radiation dose (MCWG)
 - Understand the specific constrains
 - Design the required system architecture
- Identifying and testing of rad-tolerant systems (RADWG)
 - Choice of components (COTS, rad-tolerant, rad-hard)
 - Testing at irradiation facilities for validation
 - IRRAD, CHARM, PSI, SACLAY, ...
 - Hiradmat (functional tests)
- Radiation monitoring in the CERN accelerator complex (MCWG)
 - Follow-up and evolution of the radiation doses in the machine

BI activities funded by R2E

- R2E supports the development of BI rad-tolerant /Rad-hard systems
 - Through the funding of Students and Fellows
 - based in BI group
 - based in EP/ESE working on ASIC design or Rad-hard components (optical transmission link)
 - Development of BI custom made rad-tolerant FE electronic board for approved projects (LIU, Hilumi,..)
 - General R&D activities looking into longer term problematic for BI (e.g. radiation-hard camera, ...)
- R2E supports the validation and purchase of COTS components

A selection of BI-R2E developments

BI boards using ASICs developed by EP

New digital Front-end board for the SPS beam position acquisition system

- System installed in tunnel underneath magnet
- 216 units
- Part of LIU Installation performed during LS2

Split GEFE (S-GEFE)

- FE based on a combination of 2 boards: L-GEFE and F-GEFE
 - The Link-GEFE (L-GEFE) is rad-hard by design up to TID levels of >10kGy
 - Communication ASIC (GBTx) and optical transceivers (VTRx) from EP
 - The Carrier-GEFE (C-GEFE) is rad-tolerant up to TID levels of 750 Gy
 - FMC carrier card featuring COTS components (e.g. Proasic3 FPGA)
 - FMC mezzanine for applications specific acquisition (e.g. ADCs)

Courtesy of M. Barros Marin

L-GEFE and C-GEFE may be used independently

R2E Annual Meeting – December 11-12, 2018

Split GEFE (S-GEFE)

- Status:
 - Production stage (~300 pieces)
- Roadmap:

Common solution for accelerator instrumentation optical links

Common solution for accelerator instrumentation optical links

based on the versatile link framework (VTR)

targeting 10.24 Gb/s upstream operation

4 channel wavelength division multiplexing scheme (CWDM)

compatible with next generation rad-hard chipset for optical data links (LpGBT)

Project status

demonstration of 10.24 Gb/s upstream operation Laser driver (GBLD) insensitive to TID in the specification range moderate displacement damage of CWDM Lasers

Next steps

- radiation tolerance validation of CWDM optical MUX solutions for standard SFP cage compatibility
- defining of final link architecture

moving towards parts procurement and production

R2E Annual Meeting – December 11-12, 2018

Courtesy of C. Scarcella

Beam instrumentation

Common solution for accelerator instrumentation optical links

based on the versatile link framework (VTR)

targeting 10.24 Gb/s upstream operation

4 channel wavelength division multiplexing scheme (CWDM)

compatible with next generation rad-hard chipset for optical data links (LpGBT)

See talk on Wednesday afternoon at 17h35 on **'Radiation hardness in single-mode optical links for Accelerator Instrumentation' by Carmelo Scarcella**

moderate displacement damage of CWDM Lasers

Next steps

- radiation tolerance validation of CWDM optical MUX
- solutions for standard SFP cage compatibility
- defining of final link architecture
- moving towards parts procurement and production

R2E Annual Meeting – December 11-12, 2018

ASICs development for Beam loss monitoring

ASICs development for Beam loss monitoring

Developing two fully functional custom ASICs to evaluate the performance of two different architectures within a realistic environment Technology

- standard CMOS 130 nm qualified at CERN for 200 Mrad
- Supply voltage 1.2 V (possibly higher for analog)
- Two analog readout channels per chip
- Triplicated digital circuitry with majority voting
- Directly compatible with LpGBT (e-Link)
- Double communication channels for redundancy
- Chip dimensions 4x4 mm
- To be housed in a standard 64 pin Quad Flat Package (10x10 mm)

Project schedule:

- 2018 : Design and simulation
- 2019 : Prototypes and testing
- 2020 : Final prototype architecture selection

Courtesy of L. Giangrande

ASICs development for Beam loss monitoring

Developing two fully functional custom ASICs to evaluate the performance of two different architectures within a realistic environment Technology

standard CMOS 130 nm qualified at CERN for 200 Mrad
 Supply upltage 1.2 V (page/blub/sigher for angles)

See talk on Wednesday afternoon at 17h20 on **'ASIC design for the Beam Loss Monitor upgrade'** by Luca Giangrande

- Chip dimensions 4x4 mm
- To be housed in a standard 64 pin Quad Flat Package (10x10 mm)

Project schedule:

- 2018 : Design and simulation
- 2019 : Prototypes and testing
- 2020 : Final prototype architecture selection

Courtesy of L. Giangrande

2

Ch. 1

NG-Medium Evaluation for BLM

- NanoXplore started in 2015 in Paris
- HW design in Paris and SW design in Montpellier
- STM radhard process
- Radiation tolerant market (space and nuclear industries)
- 4 products available or in the roadmap:
 - eFPGA
 - □ <u>NG-Medium (65nm)</u> → VEGAS European project to validate it
 - □ NG-LARGE (65nm)
 - □ NG-Ultra (28nm) → DAHLIA European project to create a SoC
- → Good feedback from the first users (Airbus, Thales, GVM,...):
 "really good support and reactivity" "No major issue on the hardware" "Huge improvement of the software in 2017-2018"

Courtesy of M. Saccani

NG-Medium Evaluation for BLM

- SRAM FPGA
- RadHardened by design (no need for TMR)
- TID up to 300krad (tested also at CERN)
- ConfigRAM integrity check
- BRAM EDAC
- Packaging: plastic FG625 available
- 35k LUT4/DFF, 112 DSP, 54BRAM, 24 Clocks
- Requires a non-volatile memory for configuration
- EDA: NanoXmap entirely in Python
- This design flow is now mature
- IP core generator and scope debugger available

NanoXmap

Courtesy of M. Saccani

NG-Medium Evaluation for BLM

Objective:

- Replace the antifuse SX72 on the BLM acquisition tunnel board
- Improve performances: more bits and faster sampling.

-	FPGA footprint:	PQFP208 (784mm ²)	→	FG625 mm ²
-	Technology:	220nm	→	65nm
-	Registers:	2012	→	32,256
-	BRAM:	0	→	56
-	DSP:	0	→	112
-	LVDS channels:	0	→	240

Means:

- One DevKit in use since November in BL section
 - Evaluation of the design flow
 - Contact with NanoXplore Support to get new features (serial number and internal temperature)
 - Design of a mockup by replacing the antifuse pin to pin

Courtesy of M. Saccani

Irradiation test of Ethernet to Fibre Optics converter (ADVANTEC EKI-2741LX)

Irradiation test of Ethernet to Fibre Optics converter (ADVANTEC EKI-2741LX)

Needed to use high performance Digital camera in CERN accelerator complex

System tested @charm in August 2018

Courtesy of S. Burger

R2E Annual Meeting – December 11-12, 2018

Beam instrumentation

Irradiation test of Ethernet to Fibre Optics converter (ADVANTEC EKI-2741LX)

System still alive after the campaigns !

- Single events can stop camera acquisitions
 - Power cycles reset correctly the system
- System keeps working up to 45 Gy TID
 - Shielding for ETH to fiber converters foreseen
- Failure cross section lower than cameras -> Not limiting factor

Courtesy of S. Burger

Irradiation test of Ethernet to Fibre Optics converter (ADVANTEC EKI-2741LX)

System still alive after the campaigns !

- Single events can stop camera acquisitions
 - Power cycles reset correctly the system
- System keeps working up to 45 Gy TID

Dimensions (W x H x 0) 37 x 140 x 55 mm

See talk on Wednesday afternoon at 17h50 on **'Radiation hardness tests of Optical fibre components' by Damiano Celeste**

Developing rad-tolerant solutions

Beam imaging using Optical fibre bundles

Developing rad-tolerant solutions

Beam imaging using Optical fibre bundles

<u>Problem</u> : The most radiation hard cameras used at CERN, i.e. Vidicon tubes, are no longer produced.

Motivation : Moving the camera as far as possible from the source of radiation

Developing rad-tolerant solutions

Beam imaging using Optical fibre bundles

- Developing optical system using a 10m long Fiber bundle from Fujikura (FIGR10)
- Performing irradiation tests at Saclay using ⁶⁰Co source
- Performing functional test on a BTV system in TT2 beam line

R2E Annual Meeting – December 11-12, 2018

Courtesy of D. Celeste

Developing rad-tolerant components

Beam imaging using Optical fibre bundles

- Developing optical system using a 10m long Fiber bundle from Fujikura (FIGR10)
- Performing irradiation tests at Saclay using ⁶⁰Co source
- Performing functional test on a BTV system in TT2 beam line

See talk on Wednesday afternoon at 17h50 on 'Radiation hardness tests of Optical fibre components' by Damiano Celeste

CERN

R2E Annual Meeting – December 11-12, 2018

Beam instrumentation

Courtesy of D. Celeste

Conclusions

• R2E is funding projects in BI at a level of 2.5MCHF (CTC in 2025)

- Manpower and hardware developments
- Main CERN projects : LIU, Hilumi and Consolidation
- R&D activities
- BI group strongly relies on R2E project structure
 - Calculations on expected radiation levels and doses to electronic
 - Testing capabilities, especially at CHARM, IRRAD
 - Monitoring capabilities (RadMon)
- Please come and listen to the BI talks tomorrow for more details

Thanks for your attention

Architectures comparison

Fast response to large current steps. INL(before calibration) in the higher range (1pA~1mA): 15 % INL(before calibration) in the lower range (1pA~10µA): 0.5 % RMS noise in the 10µs integration window (Wilkinson ADC): < 2 nA Current consumption: 15 mA

High resolution due to oversampling and numerical filtering. INL (before calibration) in the range 1μ A~1mA: < 2 % RMS noise in the high current range (before filtering): 250 nA Current consumption: 4 mA ~ 8 mA

CDWM Single-Mode Versatile link

Radiation zone	e Radiation free zone	Э
	4 x 10 Gb/s on a single fiber	
Front-end Radiation hard Transceiver - VTRx	Passive optics Single-mode optical fibers Optical MUX/DEMUX	Back-end Custom off-the-shelf transceiver
Parameter	Value	Units
Max Uplink Bit Rate	4.8 or 10.24	Gb/s
Max Downlink Bit Rate	4.8	Gb/s
Wavelengths	1270/1290/1310/1330	nm
Total ionizing dose (TID)	10	kGy
Fluence	5 · 10 ¹⁴	n/cm ² MeV neutrons

Project Milestones

Standard SFP

cage compatibility

Displacement damage EEL 5 · 10¹⁴ n/cm² MeV neutrons fluence

Link specs definition and production

GBLD Laser driver TID test

CWDM MUX radiation tolerance

Next steps

CERN