Review of R2E-related projects

S. Uznanski, B. Todd, Y. Thurel, V. Herrero, J. Chanois

Outline

- Finished & qualified products
- On-going developments towards HL-LHC
- Future developments
- Impact of RR converters on LHC operation
- Conclusions

Finished & qualified products

EPC Item / type	Status	TID [Gy]	SEE XS [cm²]	DD [/cm2]	Available	Deployed
FGClite	In operation	200 qualified	<10 ⁻¹³ qualified	>10 ¹² qualified	2016	ARC: EYETS RR1/5/7: LS2
RadDIM	In operation	200 qualified	<10 ⁻¹³ qualified	>10 ¹² qualified	2016	ARC: EYETS RR1/5/7: LS2
R2E-LHC 600A-10V	Production	300 qualified	<10 ⁻¹² qualified	>10 ¹² qualified	2019	RR1/5/7: LS2
R2E-LHC 4-6-8kA-08V	Production	60 qualified	<10 ⁻¹² qualified	>10 ¹² qualified	2020	RR1/5/7: LS2

FGClite

- Rad-tol & High-Rel replacement of the FGC2
 - Distributed regulation to avoid using MCU/DSP in rad-area
 - Plug-in compatible with the FGC2
- Fully compliant with R2E RHA design flow: EDMS 2046131
 - Component selection: type rad-tests
 - Production lot rad-tests
 - System validation at CHARM
 - ~50 components, ~10 facilities, >1000h of beam time
- Reliability modeled & confirmed post-deployment
 - Proven >1Mh of MTTF, >12M dev*h in OP with 1 HW failure, 3 HW replacements



R2E Annual Meeting, Dec 11-12, 2018

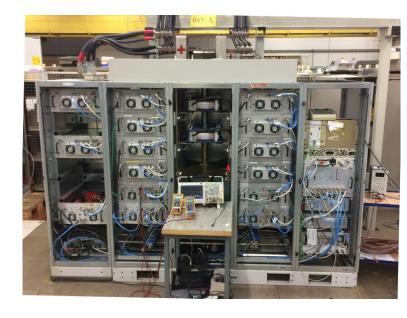
RadDIM

- Rad-tol & High-Rel replacement of the DIM-550
 - Projects shares the BoM and part qualification with the FGClite
- Fully compliant with R2E RHA design flow: EDMS 2046131
 - Component selection: type rad-tests
 - Production lot rad-tests
 - System validation at CHARM
- Second production batch needed funded by HL-LHC
 - Assembly & test in 2019
 - Needed for the HL-LHC(60-120)A-10V

3900x + 2000x

R2E-LHC600A-10V

- Rad-tol replacement of the LHC600A-10V
 - Rad-tol, fully redundant design overcoming electrical limitations
- System rad-validation done at CHARM
 - Production lot rad-tests with dedicated testers in 2017
 - System rad-tests at CHARM done
- Pre-series fully validated at CERN
 - Project currently in full production phase
- Project on time to be deployed during LS2



R2E-LHC4-6-8kA-08V

- Rad-tol replacement of the LHC4-6-8kA-08V
 - Rad-tol, fully redundant design
- System rad-validation done at CHARM
 - Production lot rad-tests with dedicated testers
 - System rad-tests at CHARM
- Pre-series fully validated at CERN
 - Project in full production phase
- Project on time to be deployed during LS2:
 - Production on schedule
 - Budget has been reduced to 6.00MCHF
 - 6.35MCHF was requested and is needed

R2E Annual Meeting, Dec 11-12, 2018

On-going / scheduled developments

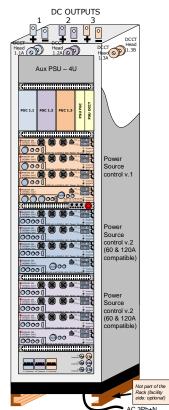
EPC Item / type	Status	TID [Gy]	SEE XS [cm²]	DD [/cm2]	Budget	Design/ Production
Tri-Volt Bi-Volt	R2E-funded (design) Production not funded 740x*/490x*	200 <i>Spec</i>	<10 ⁻¹² <i>Spec</i>	>10 ¹² <i>Spec</i>	1.1 MCHF*	2019-2020 Deployment Post LS2
R2E-HL-LHC60A-10V	HL-Funded (design + prod) R&D >LS2	70-200 <i>Spec</i>	<10 ⁻¹² <i>Spec</i>	>10 ⁻¹² <i>Spec</i>	7.8 MCHF	2022+ Deployment LS3
R2E-HL-LHC120A-10V	HL-Funded (design + prod) R&D >LS2	70-200 <i>Spec</i>	<10 ⁻¹² <i>Spec</i>	>10 ⁻¹² <i>Spec</i>	4.4 MCHF	2022+ Deployment LS3

* Numbers not accounting for units for HL-LHC120A and HL-LHC60A Price estimation based on production of 25 units

R2E Annual Meeting, Dec 11-12, 2018

Tri- & Bi-Volt

- 100W Rad-tol replacement of the current Tri- & Bi-Volt design
 - DC-DC module tested at CNGS in 2009: EDMS 1053817
 - Bi-Volt/Tri-Volt PSUs tested at CHARM in 2017: EDMS 1933100
- Work on-going on DC-DC brick with external companies:
 - **TRACO:** NDA signed and components Rad-tested at CHARM
 - ASP: dedicated rad-tol design for CERN
 - BE-CO convergences
- DC-DC brick & system rad-validation at CHARM
 - COTS DC-DC component screening via EN-STI
 - Prototype design tests as well as lot qualification needed
- Potentially needed During **Run3** (replacement) & during **LS3** (full deployment)


Name	DUT	CHARM min TID	CHARM avg TID	CNGS TID
+5V Tri	DC-DC 5V 50W	25.9	47.8	40.0
+/-15V Tri	DC-DC 15V 16W	108.0	141.6	100.0
+15V Bi	DC-DC 15V 51W	53.2	64.6	80.0

R2E-HL-LHC(60-120)A-10V

- Redundant Rad-tol replacement of the current designs (R2E CSR Indico 666689)
 - Based on the same 60A-10V brick design
 - R2E-HL-LHC60A-10V 2x 60A-10V 420 units
 - R2E-HL-LHC120A-10V 3x 60A-10V 150 units
- Initially both projects were R2E but changed to R2E-HL.
 - Numbers & locations still to be confirmed (UJ/UR)
- Projects will start after LS2.

New developments

EPC Item / type	Status	TID [Gy]	SEE XS [cm²]	DD [/cm2]	Cost [/unit]	Design/ Production
Fan-Tray	Not funded 200x	200	<1E-12	>1E12	?	On-hold Needed for LS3?

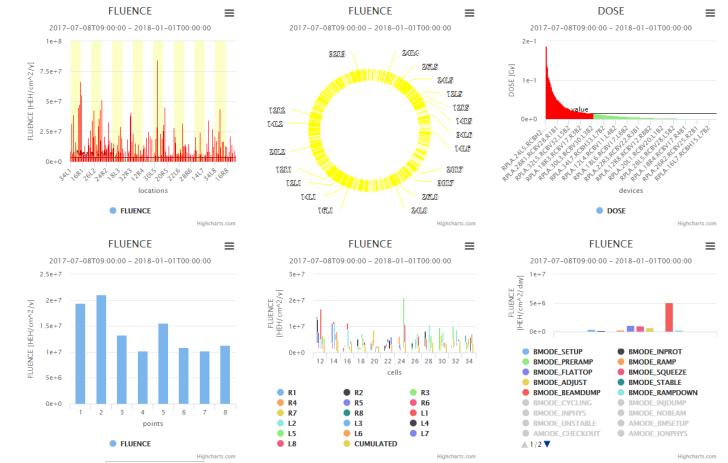
- Provide a cool air to controls crate in power converter
 - Initially dismissed, but is now needed due to mechanical integration
- Based on fans selected for power bricks: 60/200A-10V and temperature control mostly re-using the FGClite BoM
 - Production would be needed for the LS3?
- As for the Bi-/Tri-Volt Proposal to fun the R&D studies from the R2E budget and production from the HL-LHC

Radiation Levels in RR dependency on TCL settings

- TCL6 settings have a strong impact on radiation levels in the RR1/5
- 2018 open settings for TCL6 allowed a RR rad-levels reduction
 - ~4x for IP1 &
 - ~2x for IP5
 - increase in IP7 due to betatron collimator losses
- The ARC rad-levels increased due to open TCL6 impacting MPE equipment in DS locations

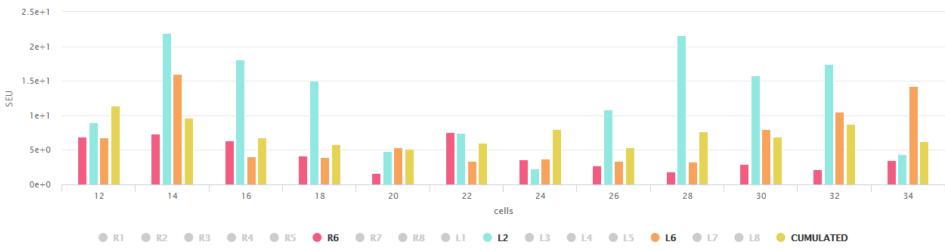
RadMON fluence per unit luminosity on the tunnel side of the RR walls

Impact of RR converters on LHC operation


- Sensitive systems and assumed SEE cross sections in RRs :
 - FGC2: 120A (x56), 600A (x76) and 4-6-8 kA (x30): **1.5-10**⁻¹⁰ cm2/unit
 - Power: 600A (x76): **3.0-10**⁻¹⁰ cm2/unit
- Expected RR1X-RR5X EPC failures:
 - 2017: 16 events
 - 2018 [up to TS2]: 11 events
- All rad-related failures in operation in 2018 :

Converter	Power	Controls
LHC600A-10V	6x	2x
LHC120A-10V	0 x	3x

 Both controls and converter failures will be mitigated thanks to the FGClite (R2E) and R2E-LHC600A-10V deployment during LS2.


FGClite-Rad-Mon http://fgclite-rad-mon.cern.ch/

logscale error bars 2017-06-02 1:30 PM - 2018

CERN

FGClite-Rad-Mon http://fgclite-rad-mon.cern.ch/

2017-07-08T09:00:00 - 2018-01-01T00:00:00

- 758x FGClites in the ARCs: great spatial coverage: Cell12-34
 - Low statistics as of now due to low radiation levels in the equipment position
- After LS2: 256x FGClites in the RRs (1/5/7)
 - Great mapping of rad-level gradients

Conclusions

- FGClite & RadDIM are deployed & fully operational:
 - FGClite Phase 2 will finish that project
 - Qualified **rad-tolerance** at component- & system-level at CHARM
 - Proven a very high-reliability exceeding the specification of 1Mh of MTTF
- R2E-LHC600A-10V & R2E-LHC4-6-8kA-08V are in production:
 - Qualified at CHARM and satisfying their rad-tol specification
 - To be deployed during the LS2
- Bi-/Tri-Volt PSUs are in R&D phase
 - R&D costs covered by R2E but production is not funded yet
- R2E-HL-LHC(60-120)A-10V
 - Project is funded from the HL-LHC budget to be launched after LS2
- Fan-Tray project is not funded and likely needed for Run 3.

