

R2E Annual Meeting 2018

Radiation tolerant developments: Cryogenics

Juan Casas & Nikolaos Trikoupis CERN TE-CRG

Cryogenic Instrumentation

Contents

- Industrial/Commercial equipment.
- Rad-hard instrumentation.
 - Radiation hardness of the LHC valve actuators.
- Custom rad-tol electronics.
 - Results from recent tests.
- R2E strategy.

Industrial/Commercial equipment

Commercial equipment in safe/protected areas, mainly:

- Industrial Programmable Logic Controllers (PLCs).
- PLC associated components (IO, field electronics, ...).
- Intelligent valve positioner: active electronics.
- Cold Compressor electronics.
- ...
- P4/P8: Already relocated.
- P2: No relocation required.
- P6 @ UX65. Low rad levels. No R2E failures ever observed (2015 used as benchmark), no relocation planned.

No relocation foreseen for HiLumi.

Radiation hard Instruments

Qualified or intrinsically rad-hard instruments:

- Temperature sensors (tested @ cold till 3 x 10¹⁴ n.cm⁻²).
- Pressure sensors measuring > 1 bar.
- Superconducting level gauges.
- Solenoid valves.
- •

Valve Positioner:

- Radiation test: Co-60 gamma source.
- Over 10 piezo tested: 1st failure @ 137 kGy TID. Overall test up to 280 kGy.
- In-situ radiation monitoring: lower doses than expected from simulations. *Results in the next slides .*

Pressure sensor:

- Low range pressure sensors required by LHC and experiments.
- Qualified supplier: none @ present!
- <u>Candidate devices being evaluated.</u>

Presentation "Radiation Hardness of Pressure Sensors Suitable to Measure in the 0-100mbar Range", by Michal Jozef Les on 12 Dec 2018 18:20.

Radiation hardness of the LHC valve actuators

Radiation hardness of the LHC valve actuators

5 92.7 102.4 112.4
1ay 29-May 31-May 02-Jun
13 424 469 515
.3 218.1 244.1 280.7
Oct 17-Oct 23-Oct 01-Nov
10 1,001 1,120 1,288

HiLumi radiation estimation shall not exceed 60 kGy for worst location

⇒ Gamma rays dose: SIPART qualified for HiLumi

However is the gamma radiation equivalent to a mixed field that include heavy particles? 60 kGy TID target difficult to reach in CHARM * Eventually single piezo test in HIRRAD?

Custom rad-tol equipment - The cryogenics crate

The cryogenics crate

For the LHC: 800 WorldFIP crates Active channels: 6500 Temperature

- 800 Pressure
- 500 Liquid He level gauges
- 1400 Cold mass heaters
- 600 Beam screen heaters
- 1100 Mechanical Switches (I/O)
- 1050 WorldFIP cards (2100 channels)
- Installed in ARCs (from cell 8), shielded and protected areas.
- All existing designs based on Microsemi antifuse A54SX FPGA (3 kGy).
- Rad-tol target for electronic components > 1kGy.

System architecture

Cryogenic Instrumentation

Cards with Smartfusion2 FPGA 2016/2017/2018

Prototype double-channel temperature card

Prototype double-channel LT card

During 2016 the 4 FPGA versions were explored:

- Onehot*/Safe, No TMR**
- Onehot/Safe, TMR
- Hamming 8/4***, TMR
- Hamming 8/4, TMR with with distant FFs

*Onehot: FSM encoding with only one "1" bit per state. **TMR: Triple Modular Redundancy on FFs only. ***Hamming 8/4: Double error detect single error correct.

All versions offered 13-bit diagnostics per channel.

3 cards with FPGA code version Hamming 8/4***, TMR

Cards with Smartfusion2 FPGA – Some results

Anti-latchup circuit to cope with non-destructive SELs.

- Testing cards with new reprogrammable FPGA Approximately 1 automatic action (local or remote) every ~1000 Gy (tunnel).
- Observation on the ADC
 - A new delivery of a long used component (ADC) was found sensitive.
 - \rightarrow Existing productions are OK.
 - \rightarrow To pay attention at future productions.

Paper on Smartfusion2 FPGA under publication: https://edms.cern.ch/document/2050890

FIP card internal errors – Power consumption

2014/2015			
WFIP1&2	MMW000208		
WFIP3&4	MMW001255		
2016			
ТОР	MMW000371		
BOT	MMW000102		
2017			
ТОР	MMW001255		
вот	MMW000208		
ТОР	MMW000371		

All 3 irradiation combined TID (Gy)

FIPs	TID Total	TID "On"
MMW000208	2958.9	1801.6
MMW001255	2121.6	1604.4
MMW000371	1686.8	1166.9

2016

2017: Used cards of previous CHARM tests. Very high annealing when powered off. All cards are still functional.

Example of ongoing unforeseen consolidation. Metastability problem on the antifuse TT FPGAs. For 2019.

- "Random" erratic behavior seen on some type of cards \rightarrow Problem understood: FPGA metastability on asynchronous inputs.
- So far problem was treated by replacing the FPGA to another "newer" code version that does not suffer from this problem.
- FPGA cannot be reprogrammed \rightarrow Addition of a flip-flop component patch (FF).

Timing violations lead to wrong state in the FPGA statemachine \rightarrow Reset

Currently 115 channels + 80 masked out of ~1100 channels

Problem solved after synchronizing the busy signal

Location on the TT card for flex PCB patch

Tested at 2 spiky cards removed from the tunnel. Noisy when original card; no noise with extra FF.

Example of flex PCB solution Estimated cost: < 10 CHF

Radiation test specs ready. To test around Jan/Feb 19. Test deployment during LS2.

Cryogenic Instrumentation

AC/DC 24V 50W device TDK-Lambda ZWS50BAF24

- Non critical low count ventilator devices installation in shielded areas.
- After some failures in LHC, mosfets replaced to rad-tol FCA36N60NF.
- After more failures on the modified supplies, the circuit was analysed.

Original power mosfets

ets Modified power mosfets

Original circuit produces 400 VDC and power mosfets see 475-500 VDC! After disabling the power factor correction circuit, DC voltage at 325 VDC And power mosfets see 400 VDC.

Tested units:

#1 Rad-tol Mosfet +47V zener without /PFC#2 Rad-tol Mosfet without zener/PFC#3 Rad-tol Mosfet without zener/PFC#4 Original mosfets without zener/PFC

Failed at:

#1 300 Gy, 1.19 10¹² HEH
#2 289 Gy, 1.14 10¹² HEH
#3 568 Gy, 2.25 10¹² HEH
#4 **4 Gy, 1.58 10¹⁰ HEH**

But finally we will install custom rad-tol linear regulator from crate supply (27 - 33) V to 24 V.

Misc devices/components e.g. 2017

FANs:

Ebmpapst VarioPro 4314/17T (4.8W @ 24V) Microblow FMA8012BS-M (1.44W @ 12V) SUNON PF80201V1-000U-A99 (3.42W @ 12V)

OPAs:

OPA132 OPA137 OPA192 OPA129 OPA602 (selected lower cost precision OPA replacement for the OPA627)

AC/DC 24 V 50W Unit (TDK-Lambda ZWS50BAF24)

Cryogenic Instrumentation

Rad-Tol: Electronics Strategy

Strategy to cope with failures and radiation effects:

- Track power consumption for individual cards/crates to assess TID effects. Presently done in R1 on 10 crates (72 cards) exposed to low and high TIDs.
- On "high" radiation areas leave RadTol crates (<10 over 800) to assess:
 - Radiation effects (if any); maximum TID (if ever reached).
 - Foresee local cable to relocate equipment to middle of cold mass for R7/L7 11T case.

- Keep adequate quantity of spare cards and components.
- Cards rotation could be option as most cards installed in the ARCs (low TIDs).

Regular maintenance/monitoring is a routine task:

- Requests for intervention and corrective actions stored in logbooks.
- Long-term signals and diagnostic data in logging database.
- Daily automated database queries on a set of pre-defined rules to detect potential problems (Elasticsearch/Kibana).

Rad-tol electronics perform as expected.

(However other lifetime reliability problems might occur earlier).

Summary

- Most of the CRG equipment shall perform satisfactorily under HiLumi conditions:
 - Radiation tests are performed once/twice per year. Essential to cope with obsolescence and to qualify new devices.
 - CRG dedicates already about 0.5 FTE for radiation issues.
- Material/devices purchased/scrapped for/after tests: **10 to 30 kCHF/year**.
- HiLumi: Stay as is; provisionally install cables to relocate cryo-crates for "risk" areas.
- Monitoring/diagnostics/maintenance are continuously being applied to all the equipment that is installed in radiation or radiation-free areas.
- End of life failures: no indication yet for any equipment (electronics, valve actuator, etc).

