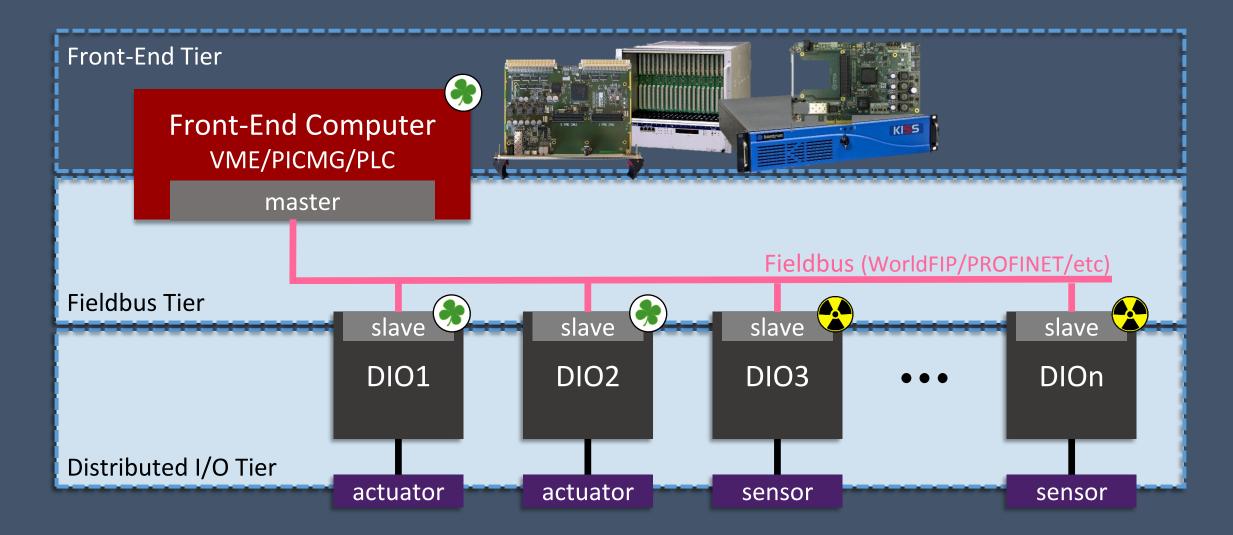

Radiation tolerant developments: Controls Distributed I/O Tier and Fieldbus project

<u>Greg Daniluk</u> | Eva Gousiou



R2E ANNUAL MEETING | 11 DEC 2018

Custom Electronics Architecture

Custom Electronics Architecture

Rad-tol Communication Technologies

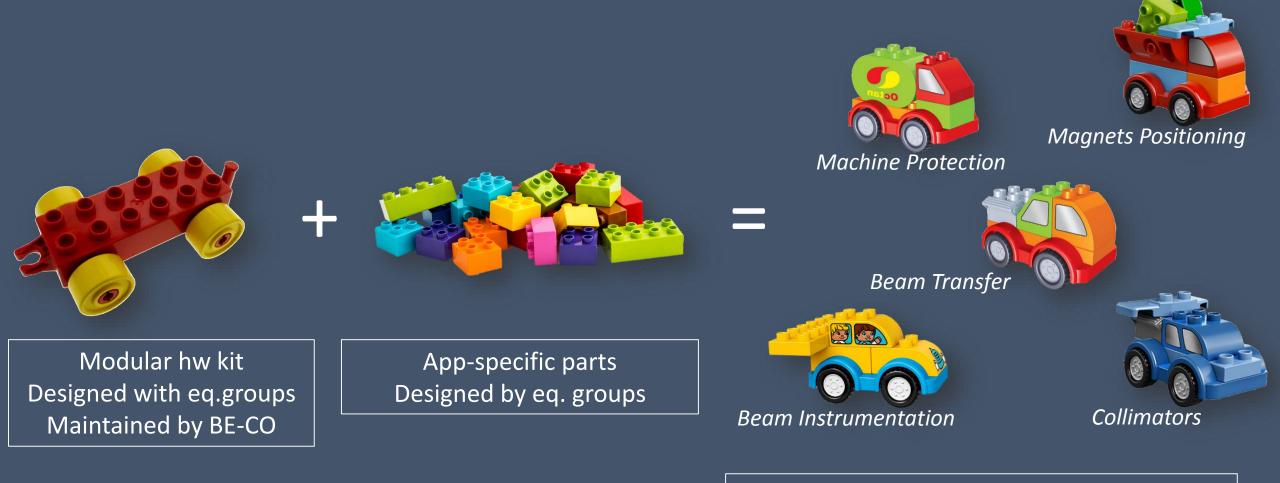
Power Converters

Machine Protection

DIOT today

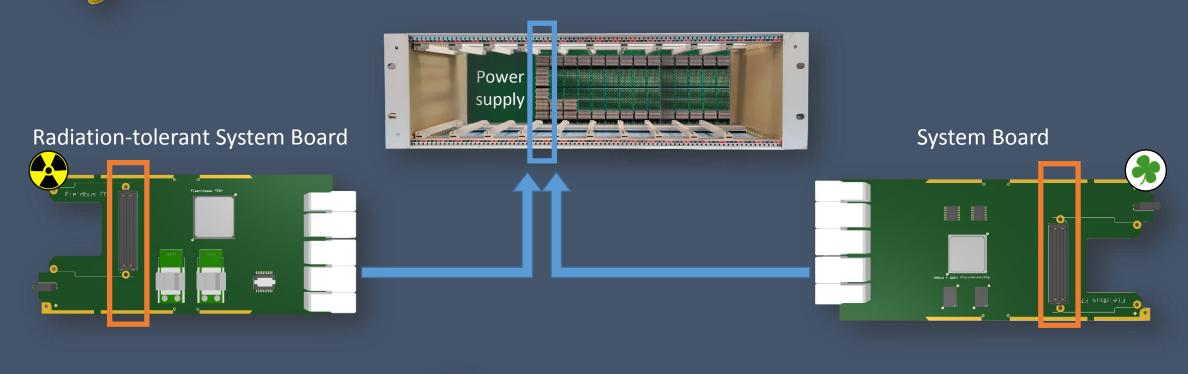
Beam Instrumentation

Beam Transfer



Front-End Computer VME/PICMG/PLC master slave 裦 \mathbf{O} slave slave 🧹 DIO1 DIO2 DIO3 actuator actuator sensor Cryogenics

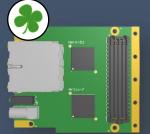
Magnets Positioning



Future DIOT Recipe

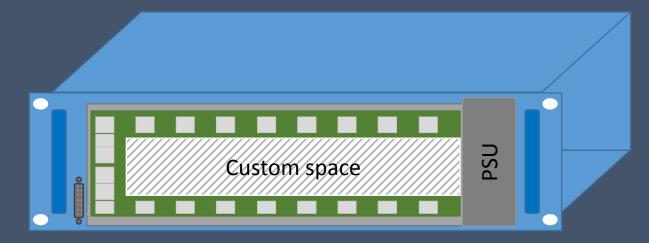
- More robust designs
- Benefit from existing developments
- Re-use between equipment groups

Common hardware kit for DIOT

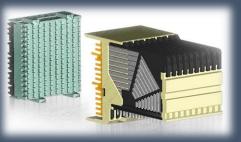


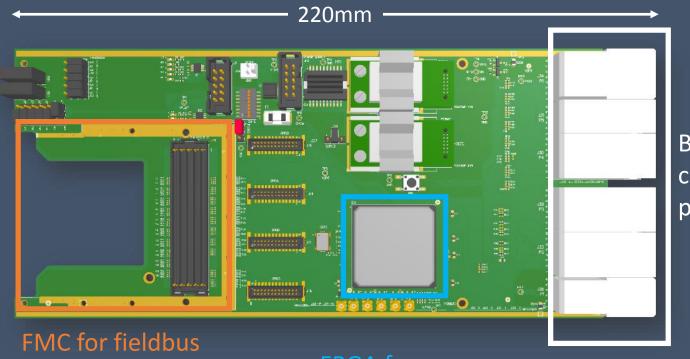
WorldFIP FMC Powerlink FMC

LpGBTx FMC



White Rabbit FMC


Industrial Ethernet FMC



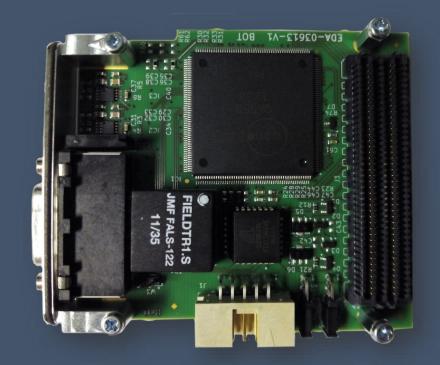
- Hosts Power Supply, System Board & Application-specific Peripheral Boards
- Low cost crate with 9-slots CompactPCI Serial backplane by default
 - Fully passive
 - Star-topology differential lanes from System to Peripheral
 - AirMax VS connectors
- Application-specific backplanes (with the system slot) possible
- Optional 1U fan tray

DIOT System Board

Backplane connector: communication with peripheral boards

FPGA for

- application-specific logic
- common crate monitoring and diagnostics

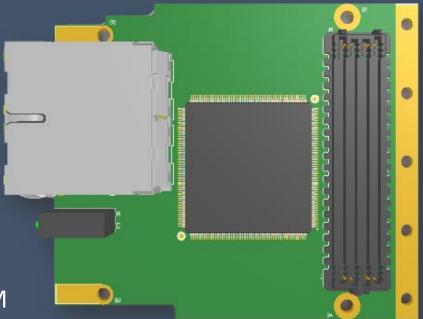


EDA-03828

- Redesigned C-GEFE (BE-BI)
- Added backplane connector to communicate with peripheral boards
- Minor fixes (including FMC compatibility)
- Together with: BE-BI, TE-MPE, EN-SMM
- 10 boards produced for lab use
- v2.0 in the future, with NanoXplore or Smartfusion2 FPGA

Se Fieldbus FMCs status Se Fieldbus FMCs status

- ProASIC3 with nanoFIP
- FielDrive + FieldTR from Alstom
- Components qualification by R2E
- Hardware executions for 31.25k, 1M, 2.5M, 5M
- Prototypes produced and tested
- Available for lab tests & developments
- Radiation tests planned for 2019



https://www.ohwr.org/projects/fmc-nanofip

Se Fieldbus FMCs status Se Fieldbus FMCs status

- Work in progress
- Run openPowerlink stack on SmartFusion2
- ARM Cortex-M3 tests in CHARM
- RISC-V softprocessor with TMR
- R2E funding: Mattia (FELL) dedicated to this task
- Radiation tests and components qualification with EN-SMM
- See the talk of Mattia Rizzi tomorrow!

Rad-tol Power Supply

- Lalit (FELL) dedicated to this task R2E and HL-LHC funding
- Collaboration with R2E and TE-EPC
- Survey of currently used rad-tol power supplies
- Gathering requirements and drafting specs
 - 230V AC \rightarrow DC +12V, +5V, 100W
 - TID > 500Gy (1kGy?)
 - Redundancy
 - PMBus monitoring interface
- First lab prototype using FEAST chips as controller of switched supply
- Components selection and qualification planned for 2019
- See the talk of <u>Lalit Patnaik</u> tomorrow on RaToPUS!

https://wikis.cern.ch/display/DIOT/Rad-tol+power+supply

- I/O board based on requirements for Warm Interlocks application (TE-MPE)
- 24V generation (TRACO)
- 16 opto-coupled current loop inputs (HCNR200)
- 16 opto-coupled relay driving outputs (HCNR200)
- Template for future application-specific Peripheral Boards
- Radiation tests in 2019

Proof of Concept

System Board + FMC nanoFIP

16I / 16O Peripheral Board

Off-the-shelf CompactPCI Serial chassis

Proof of Concept

	_	_	diot-demo	
Slot 1	Slot 2	Slot 3	Slot 4	
1 Test		33 Test		
2 Test	18 Test	34 Test 35 Test	50 Test 51 Test	N. B.a.C. a.c.
4 Test	20 Test	36 Test	52 Test	Conserver Conserver
5 Test	21 Test	37 Test	53 Test	
6 Test	22 Test	38 Test	54 Test	
7 Test	23 Test	39 Test	55 Test	
8 Test	24 Test	40 Test	56 Test	
9 Test	25 Test	41 Test	57 Test	
10 Test	26 Test	42 Test	58 Test	
11 Test	27 Test	43 Test	59 Test	
12 Test	28 Test	44 Test	60 Test	
13 Test	29 Test	45 Test	61 Test	
14 Test	30 Test	46 Test	62 Test	
15 Test	31 Test	47 Test	63 Test	
16 Test	32 Test	48 Test	64 Test	
Fans	Temperat		Voltages	
			+3.3V OK	
Fan 1 OK: 2043 Fan 2 OK: 2005	Temper	ature 1 OK: 27	+5V OK	
Fan 3 OK: 2005 Fan 3 OK: 2036 Temperature 2 OK: 26		+12V ERR -12V OK		
Status: data OK				

DIOT crate with

- System Board
- WIC Peripheral Board

• WIC I/O distribution panel

Resources & Collaborations

- HL-LHC WP 18 development & production budget (~1.3MCHF), fellows
 - Rad-tol power supply design (Lalit)
 - Crate diagnostics (Christos)
 - Rad-tol System board v2.0
 - Reliability Studies
- R2E task force radiation tests, components selection, fellows
 - Powerlink implementation (Mattia)
 - Rad-tol power supply design
- EN-SMM, TE-MPE, BE-BI, TE-EPC
 - Specification
 - Design of components of the kit

	Timeline
2016 -	
	Iterative process with eq. groups to define modular hw kit
Sep 2018 -	Proof of concept First Powerlink tests in CHARM
2020-	- Building blocks available for eq. groups
LS3 -	- Deployments in eq. groups

Thank you!

Need more information? Latest status update? Check: <u>https://wikis.cern.ch/display/DIOT</u>