Overview of RADSAGA activities at CERN

Andrea Coronetti (EN-STI-BMI) Indico link: https://indico.cern.ch/event/760345/

R2E Annual Meeting

DEC, 11-12TH | CERN, 774/R-013

11-12 December 2018

R2E Annual Meeting

Outline

- Introduction
- CHARM Experiments
- Heavy lons Experiments
- CNES Ninano and 3DPlus Camera
- Pion testing at PSI
- Prospects for 2019

Introduction

- COTS components for rad-tolerant system designs
- Rad-hard by design for critical components
- Qualification at system level, radiation environment analysis (RADSAGA objective)
- Rad hard-components
- Heavy ion SEE qualification at component level

RADSAGA

(critical space applications)

CHARM Experiments

6 ESRs + 1 partner (CNES) + 2 associates (STFC, DLR)

- **WP1** (Environments, facilities and monitoring):
 - ESR2: Cu-doped optical fibers
 - ESR4: PIN diode Canberra
 - STFC: PIN diode
- WP2 (Components):
 - ESR7: GaN and SiC Power MOSFETs
- WP3 (Systems):
 - ESR12: PoL DC-DC Converter
 - ESR14: Data System Acquisition (avionics)
 - DLR: General Software Defined Radio
- **WP4** (Guidelines):

RADSAG/

ESR15/CNES: Ninano + 3DPlus Camera

CHARM Experiments

Optical fibers

- Scope: assessment of Radioluminescence of Cu-doped fiber
- FDP used for filtering Cherenkov
- Issues during test preparation
 - Only short fibers possible
 - PMT installed underneath the patch panel
 - Signal PMT much higher than RL

Power MOSFETs

- COTS GaN and SiC :
 - Panasonic PGA26E19BA (GaN, 600 V)
 - EPC EPC2012 (GaN, 200 V) •
 - CREE C3M0120090 (SiC, 900 V)
- No SEB on GaN

RADSAGA

SEB on SiC at 95% of max VDs

DUT1: Cu-doped optical fiber DUT2: FDP Cherenkov fiber for comparison (Credit Daniel Soderstrom)

Photomultiplier Hamamatsu (Credit Daniel Soderstrom)

CHARM Experiments

PoL DC-DC Converter

- 2D board version of 3DPlus product
- Rad-hard space system
- First test: no SET, no SEL
- Re-iterated with less rad-tol components
- Why? Scope is assessment of SET propagation at system level
- SET seen, no SEL .

2D version of 3DPlus PoL DC-DC Converter Credit Tomasz Raikowski

11-12 December 2018

* German Aerospace Agency

DLR General Software

DLR* Software Defined Radio

- Main application: COM inside SAT constellation
- Digital data transmission of modulated RF signals and telemetry
- **RFIC AD9361**

•

.

- No errors on RF chip
- Controlled by Zyng with Linux OS
 - Multiple errors on Zyng and FPGA resets
 - Reset operation not affected by spill (t > 20 s)
- High flux functional errors at system level
 - KVI proton test at various fluxes **R2E** Annual Meeting

Heavy Ions Experiments

H8 North Area

- Low flux, higher LET (9 MeV.cm²/mg)
- ESR5: SRAM-based SEU Monitor

CHARM

- High flux, lower LET (8 MeV.cm²/mg)
- ESR7: GaN and SiC Power MOSFETs
- ESR12: PoL DC-DC Converter

3DPlus PoL DC-DC Converter on Montrac (Credit: Tomasz Rajkowski)

CNES – Ninano and 3DPlus Camera

- Test in R5 relevant for LEO spectra
- Test of OBC with payload
- Scope: performances of OBC and camera
- Setup issues:
 - First 2 weeks in G0
 - Last 2 weeks in R5
- Zynq still operational after 400 Gy(Si)

(Credit: CNES)

Ninano+Camera test setup for CHARM

R2E Annual Meeting

Comparison Differential Flux CHARM vs. Orbit

CNES – Ninano and 3DPlus Camera

Commercial 3D module

- SpaceWire COM with OBC
- 4 Mpixels (10/12 bits per pixel)
- Eyesat config, high exp time (1500 ms)

Declared radiation performances

- Rad-hard technology (TID > 400 Gy(Si))
- SEL immune up to 60 MeV.cm²/mg

Tested radiation performances:

- Internal electronics is TID tolerant up to 500 Gy(Si) (Co-60)
- SEL seen at CHARM

3DPlus Camera and optics

CNES – Ninano and 3DPlus Camera

RADSAG/

CERN

- Only radiation test for real images
 - Dose ~ 400* Gy(Si)
 - 1 MeV neq fluence ~ 5E+12* cm⁻²
 - HEH fluence ~ 7.5E+11* cm⁻²

Data from FLUKA assuming 5E+11 POT per spill

- Many pixels saturated after 1 week in G0
- Progressive degradation in coming weeks
- Full white image
- No recovery after 1 month from irradiation
- Better performance for black image (last week)
- Unknown issue on readout electronics or CIS?

Pion testing at PSI

Motivation

- pions make for large part of mixed-field
- treated as protons for SEE qualification

πM1 beamline

- Energy ~ 51-233 MeV
- FWHM ~ 1x1 cm²
- Max flux ~ 3e6 cm⁻²s⁻¹
- π^- , π^+ available, only negative tested

DUTs tested

- SEU
 ESA Monitor, Cypress 90 nm, Cypress 65 nm, ISSI 65
 nm
- SEL
 Lyontek 180 nm, Brilliance 180 nm

Outcome

Resonance peak above 100 MeV (mixed-field impact?)

11-12 December 2018

R2E Annual Meeting

Prospects for 2019

RADSAGA

- KVI-CART, high energy protons (January, ESR2, ESR5, ESR13)
- ChipIR, neutron spallation (March, ESR7, ESR13)
- GANIL, high LET heavy ions (July)
- RADEF, new 16 MeV/n heavy ions (?)
- PSI, high energy protons (?)

ESR15

- Electron DD on PIN diodes at VESPER (April)
- Guideline development
 - Facility summary
 - Wide bandgap
 - 14 MeV neutrons

Overview of RADSAGA activities at CERN

Andrea Coronetti (EN-STI-BMI) Indico link: https://indico.cern.ch/event/760345/

R2E Annual Meeting

DEC, 11-12TH | CERN, 774/R-013

11-12 December 2018