Powerlink: status and developments

Mattia Rizzi

BE/CO/HT
Powerlink – What is?

- Industrial Ethernet Fieldbus
 - ProfiNET (Siemens)
 - EtherCAT
 - Ethernet/IP

- Open Standard
 - No patents (royalties)
 - No mandatory subscriptions
 - No mandatory sell
Powerlink stack

- Open source implementation available (openPOWERLINK)

- Run on a number of devices
 - PLC
 - Computer (userland and kernel)
 - Embedded devices
 - Userland runs in a ARM
 - Kernel runs in a soft-processor for real-time performances

- openPOWERLINK not designed for low-memory embedded device
 - Running userland & kernel stack require >300 kB of memory (code and data)
 - Code of Master and Slave implementation is mixed together

- Goal: run it on a SmartFusion 2 FPGA
SmartFusion 2

- FLASH based FPGA, with fabric SRAM and DFFs
- ARM core + ECC SRAM (64 kB) + eNVM (flash memory for code)
Results at CHARM using ARM Cortex-M3

- openPOWERLINK memory footprint reduced to 170 kB (143 kB of code, 27 kB of data)
- Processor clocked at 100 MHz
- Data memory protected by ECC

- Tested in G0 position for one week (about 25 Gy TID)
 - Multiple self-resets due to internal PLL loss-of-lock
 - Freezed several times (one every 10 hours), power cycle required, no useful debug messages
 - No increased power consumption detected

- Cortex-M3 is not TMRed
- AHB interconnect is not TMR
- eNVM is OK under radiation, but it is connected to AHB interconnect!
Soft-core based SoC

- RISC-V softprocessor with TMR
- ECC (SEC-DED) instruction memory up to 92 kB
- ECC (SEC-DED) data memory up to 32 kB ought to be enough for anybody
- Application loaded from eNVM memory and stored inside both memories (integrity check/cryptographic signature)
Logic utilization

- Partial TMR of RISC-V running at **50 MHz**, **32 kB + 32 kB of ECC SRAM**, Ethernet MAC
- **Fmax**: 60 MHz
- DFFs and LUTs with MS2050 SF2: **30% (15k LUTs, 13k DFFs)**
Results at CHARM using RISC-V SoC

- Partial TMR of RISC-V running at 50 MHz
- ECC instruction and data memory: $8\text{ kB} + 8\text{ kB}$
- RISC-V running a checksum of data memory
- ECC single error & double error stats
 - SEU Cross-section (single error correction): 2.4E-14
 - Double error cross-section: no data
Prospects for 2019

- True TMR of RISC-V, keeping 50 MHz
- Optimize SRAM utilization
- Fix Ethernet MAC bugs and improve it for rad-tol
- Optimize Powerlink stack: 50 kB of code
- Test low-latency Industrial Ethernet PHY (Texas Instruments DP83822) under radiation