Key measurements for future flavor physics

Yuval Grossman

Cornell

Where are we?

The BIG question:

Can we see BSM?

What about QCD?

- Past: Problem. Need to overcome QCD in order to probe the weak interaction
- Future: Learn about QCD using the weak interaction

Are we seeing the tail?

Y. Grossman

Flavor physics
Durham, Apr. 2nd, 2019 p. 3

The Zoltan plot

Y. Grossman

Flavor physics
Durham, Apr. 2nd, 2019 p. 4

What next?

My personal list. Please let me know the missing items

- Keep going
- CPV in Charm
- Strong phases
- Baryons
- Multi-body decays

Keep going

"Near" future

A lot of things that are "in the making" and we like to make sure we do the best:

- $B \rightarrow D K$. A lot to do (can unbinned do better?)
- Anomalies: R_{D}, R_{K}, \ldots
- "Standard" CPV. We need to think about isospin breaking
- Rare kaon decays, $K \rightarrow \pi \nu \bar{\nu}$

CPV in charm

Y. Grossman

Flavor physics
Durham, Apr. 2nd, 2019 p. 8

CPV in charm

A big deal...

- Is it SM? Or, better to ask: Is it BSM?
- Assuming it is SM, we learn about QCD
- My best way to summarize the situation is: "It is hard to argue that it is BSM"
- we learn
- Charm is not heavy
- Flavor SU(3) is good

How to further test CPV in charm?

We need to keep checking if it is BSM

- Get $a_{C P}$ for each mode
- In the SM it comes from $\Delta U=0$. Look for CPV in $\Delta U=1$, like in $D^{+} \rightarrow \pi^{+} \pi^{0}$
- Get more information on strong phases
- Looking for related decays, for example, $D \rightarrow K K \pi$

Charm baryons?

Look at

$$
\Lambda_{c} \rightarrow p K^{+} K^{-} \quad \Lambda_{c} \rightarrow p \pi^{+} \pi^{-}
$$

Same diagrams as $D \rightarrow K^{+} K^{-}$and $D \rightarrow \pi^{+} \pi^{-}$

- In the $\operatorname{SU}(3)$ limit

$$
a_{C P}(D \rightarrow K K)=-a_{C P}(D \rightarrow \pi \pi)
$$

- The spectators are important. In the $\mathrm{SU}(3)$ limit

$$
a_{C P}\left(\Lambda_{c} \rightarrow p K^{+} K^{-}\right) \neq a_{C P}\left(\Lambda_{c} \rightarrow p \pi^{+} \pi^{-}\right)
$$

- Measuring the asymmetries in baryons can teach us about QCD

Strong phases

Strong phases

We like to get as many as we can

- Important in many cases: $B \rightarrow D K, \mathrm{CPV}$ in charm
- Getting them out of correlated decays where the decaying state is

$$
a|D\rangle+b|\bar{D}\rangle .
$$

- So far done at tau-charm factories $\psi(3770) \rightarrow D \bar{D}$
- Can we do it at LHCb and/or Belle-II?
- From $\psi(3770)$
- From $B \rightarrow D \bar{D}$ decays
- From $B \rightarrow D \bar{D} X$ decays

Baryons

Y. Grossman

Flavor physics

Baryons

Baryons open a new set of probes to QCD

- We already have indications for CPV in Λ_{b} decays
- We know the weak phase, we can learn about QCD
- We have more variables to play with
- Polarization: Can help us probe the Dirac structure of operators
- At high energy, we can use it to get b polarization
- At Belle-II, get c polarization

Multi-body decays

Multi-body decays

A lot already has been done, and much more to do

- We can use much more data
- CPV "without" strong phases
- Take advantage of resonances (like in $B \rightarrow D^{* *} \tau \nu$)
- CP-odd angular correlations (triple products and more)

Conclusions

Conclusions

Win-win situation

- Hopefully, we will see BSM
- Even if not, we are learning about QCD

Y. Grossman

Flavor physics
Durham, Apr. 2nd, 2019 p. 19

