Key measurements for future flavor physics

Yuval Grossman

Cornell

Y. Grossman

Flavor physics

Where are we?

The BIG question:

Can we see BSM?

What about QCD?

- Past: Problem. Need to overcome QCD in order to probe the weak interaction
- Future: Learn about QCD using the weak interaction

Are we seeing the tail?

Y. Grossman

Flavor physics

The Zoltan plot

Y. Grossman

Flavor physics

What next?

My personal list. Please let me know the missing items

- Keep going
- CPV in Charm
- Strong phases
- Baryons
- Multi-body decays

Keep going

Flavor physics

"Near" future

A lot of things that are "in the making" and we like to make sure we do the best:

- $B \rightarrow DK$. A lot to do (can unbinned do better?)
- Anomalies: R_D , R_K , ...
- "Standard" CPV. We need to think about isospin breaking
- Rare kaon decays, $K \to \pi \nu \bar{\nu}$

CPV in charm

Flavor physics

CPV in charm

A big deal...

- Is it SM? Or, better to ask: Is it BSM?
- Assuming it is SM, we learn about QCD
- My best way to summarize the situation is: "It is hard to argue that it is BSM"
- we learn
 - Charm is not heavy
 - Flavor SU(3) is good

Y. Grossman

Flavor physics

How to further test CPV in charm?

We need to keep checking if it is BSM

- Get a_{CP} for each mode
- In the SM it comes from $\Delta U = 0$. Look for CPV in $\Delta U = 1$, like in $D^+ \rightarrow \pi^+ \pi^0$
- Get more information on strong phases
- Looking for related decays, for example, $D \to KK\pi$

Charm baryons?

Look at

$$\Lambda_c \to pK^+K^- \qquad \Lambda_c \to p\pi^+\pi^-$$

Same diagrams as $D \to K^+ K^-$ and $D \to \pi^+ \pi^-$

In the SU(3) limit

$$a_{CP}(D \to KK) = -a_{CP}(D \to \pi\pi)$$

The spectators are important. In the SU(3) limit

$$a_{CP}(\Lambda_c \to pK^+K^-) \neq a_{CP}(\Lambda_c \to p\pi^+\pi^-)$$

 Measuring the asymmetries in baryons can teach us about QCD

Y. Grossman

Flavor physics

Strong phases

Flavor physics

Strong phases

We like to get as many as we can

- Important in many cases: $B \rightarrow DK$, CPV in charm
- Getting them out of correlated decays where the decaying state is

 $a|D\rangle + b|\bar{D}\rangle.$

- So far done at tau-charm factories $\psi(3770) \rightarrow D\bar{D}$
- Can we do it at LHCb and/or Belle-II?
 - From $\psi(3770)$
 - From $B \to D\bar{D}$ decays
 - From $B \to D\bar{D}X$ decays

Baryons

Flavor physics

Baryons

Baryons open a new set of probes to QCD

- We already have indications for CPV in Λ_b decays
 - We know the weak phase, we can learn about QCD
 - We have more variables to play with
- Polarization: Can help us probe the Dirac structure of operators
 - At high energy, we can use it to get b polarization
 - At Belle-II, get *c* polarization

Multi-body decays

Flavor physics

Multi-body decays

A lot already has been done, and much more to do

- We can use much more data
- CPV "without" strong phases
 - Take advantage of resonances (like in $B \to D^{**} \tau \nu$)
 - CP-odd angular correlations (triple products and more)

Conclusions

Flavor physics

Conclusions

Win-win situation

- Hopefully, we will see BSM
- Even if not, we are learning about QCD

Flavor physics