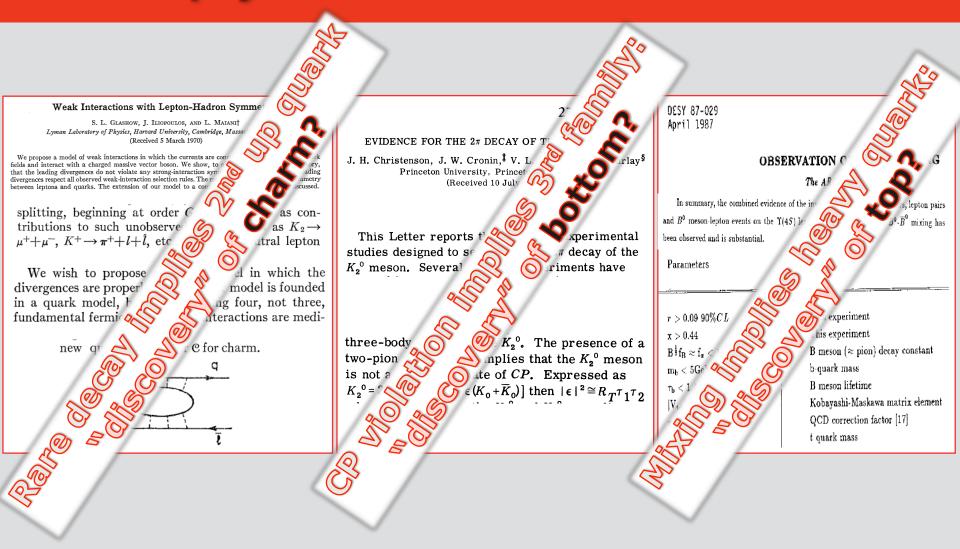


Lessons learned from LHCb about making precise flavour measurements

On the menu


- Introduction: Precision measurements
- Recent highlights
- Where do we come from?
- What brought us here?
 - Lumi levelling
 - Trigger
 - Magnet flips
 - Data driven
 - Tracking
 - PID
 - Control channels

Lessons learned from LHCb

Flavour physics has a track record...

GIM mechanism in $K^0 \rightarrow \mu \mu$	CP violation, $K_L^0 \rightarrow пп$	$B^0 \leftarrow \rightarrow B^0$ mixing
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. ILIOPOULOS, AND L. MAIANI† Lyman Labordory of Physics, Harrard University, Cambridge, Massachusetis 02139	27 July 1964	DESY 87-029 April 1987
(Received 5 March 1970) We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Mills theory is discussed.	EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON* [†] J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)	OBSERVATION OF B⁰ - B⁰ MIXING The ARGUS Collaboration
splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \tilde{l}$, etc., involving neutral lepton We wish to propose a simple model in which the	This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have	In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the $\Upsilon(4S)$ leads to the conclusion that $B^0.\overline{B}^0$ mixing has been observed and is substantial. Parameters Comments
divergences are properly ordered. Our model is founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi- new quantum number \mathbb{C} for charm.	three-body decays of the K_2^0 . The presence of a two-pion decay mode implies that the K_2^0 meson is not a pure eigenstate of <i>CP</i> . Expressed as $K_2^0 = 2^{-1/2} [(K_0 - K_0) + \epsilon (K_0 + K_0)]$ then $ \epsilon ^2 \cong R_T^{\tau} 1^{\tau} 2$	$eq:rescaled_$
Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 1285	Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138-140	ARGUS Coll. Phys.Lett.B192:245,1987

Flavour physics has a track record...

Historical record of indirect discoveries:

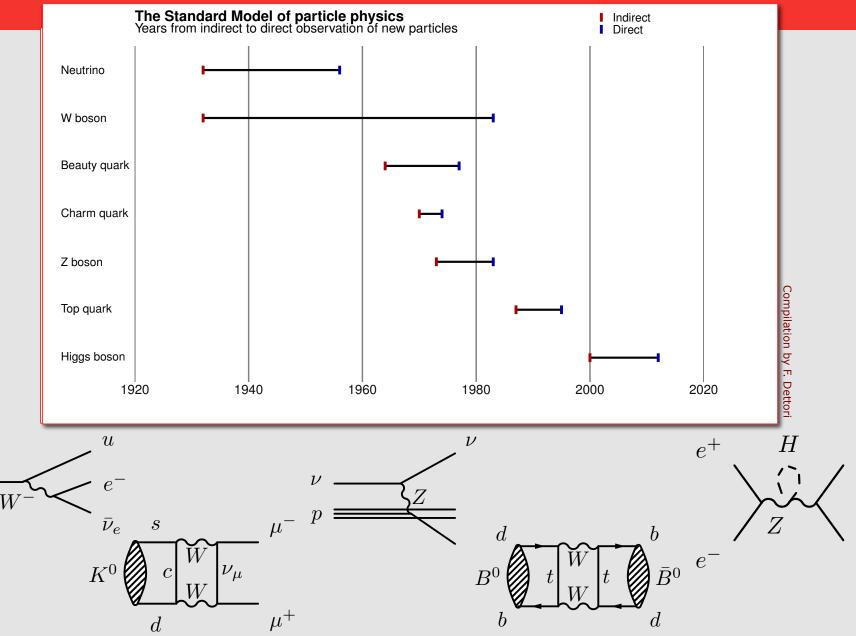
d

 μ^+

d

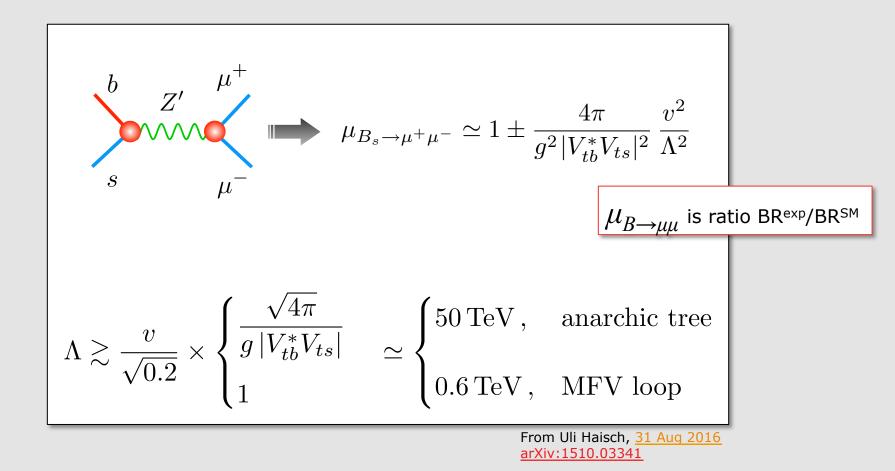
Particle		Indirect			Direct	
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983
с	<i>К⁰ →µµ</i>	GIM	1970]/ψ	Richter, Ting	1974
b	СРV <i>К⁰→пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977
Z	v-NC	Gargamelle	1973	Z→ e+e-	UA1	1983
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995
н	e+e-	EW fit, LEP	2000	<i>H→</i> 4μ/γγ	CMS, ATLAS	2012
?	What	's next ?	?			?
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ W^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ e^{-} \\ \overline{\nu}_{e} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \mu^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ p \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \bigg{(} \end{array} \\ \end{array} \\ \bigg{(} \end{array} \\ \end{array} \\ \bigg{(} \end{array} \\ \bigg{(} \end{array} \\ \end{array} \\ \bigg{(} \end{array} \left(\end{array} \bigg{(} \end{array} \\ \bigg{(} \end{array} \\ \bigg{(} \end{array} \\ \bigg{(} \end{array} \\ \bigg{(} \end{array} \bigg{(} \end{array} \\ \bigg{(} \end{array} \\ \bigg{(} \end{array} \left{(} \end{array} \left{(} \end{array} \left{(} \end{array} \left{(} \end{array} \left{(} \end{array} \\ \bigg{(} \end{array} \left{(} \end{array}						

b

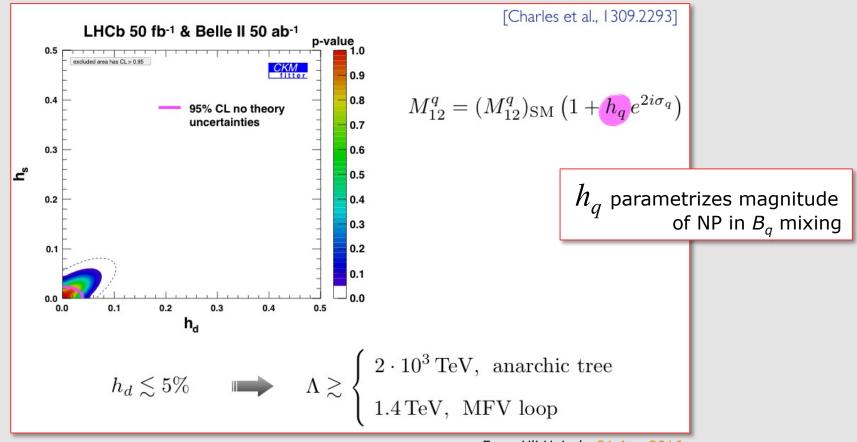

d

Direct discoveries rightfully higher valued:

d


Particle		Indirect			Direct	
ν	β decay	Fermi	1932 🤣	Reactor v-CC	Cowan, Reines	1956 🍦
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983 🧯
с	<i>K</i> ⁰	GIM	1970	J/ψ	Richter, Ting	1974
b	СРV <i>К⁰ →пп</i>	CKM, 3 rd gen	1964/	Y	Ledermann	1977
Z	ν-NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995
н	e+e-	EW fit, LEP	2000	$H \rightarrow 4 \mu / \gamma \gamma$	CMS, ATLAS	2012
?	What's next??			?		
$ \begin{array}{c} & u \\ & & $						

d



7

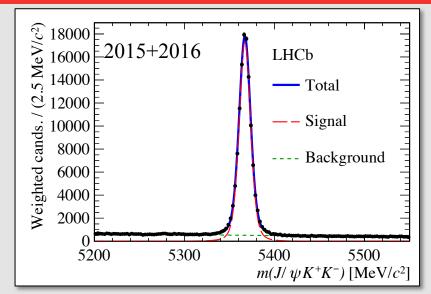
Depending on your model, sensitive to multi-TeV scales, eg:

Depending on your model, sensitive to multi-TeV scales, eg:

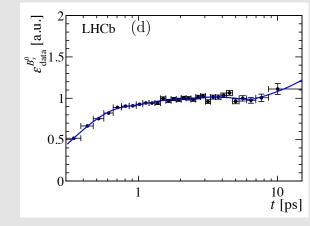
From Uli Haisch, <u>31 Aug 2016</u>

Recent highlights

- Φ_s
- R_K
- Exotic spectroscopy
- ΔA_{CP}


$\boldsymbol{\phi}_{s}$

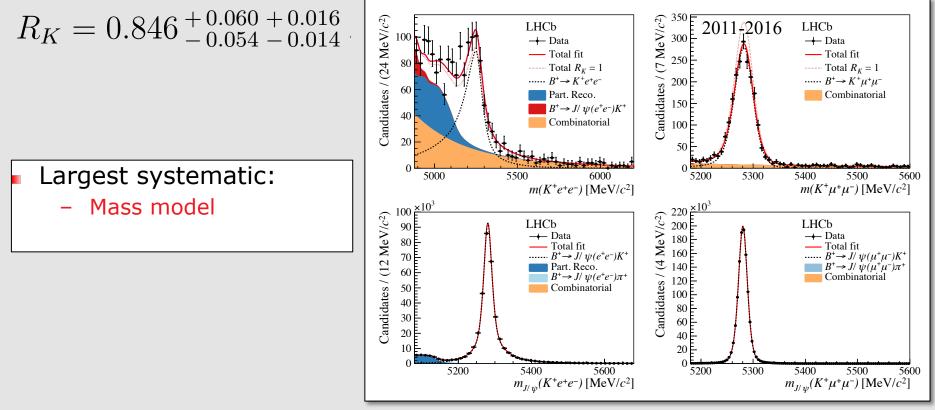
$117\,000 \ B_s^0 \to J/\psi K^+ K^-$


Parameter	Value
ϕ_s [rad]	$-0.080 \pm 0.041 \pm 0.006$
$ \lambda $	$1.006 \pm 0.016 \pm 0.006$
$\Gamma_s - \Gamma_d \ [\mathrm{ps}^{-1}]$	$-0.0041 \pm 0.0024 \pm 0.0015$
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	$0.0772 \pm 0.0077 \pm 0.0026$
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.705 \pm 0.059 \pm 0.018$

Largest systematic:

- Decay time bias
- Decay time efficiency

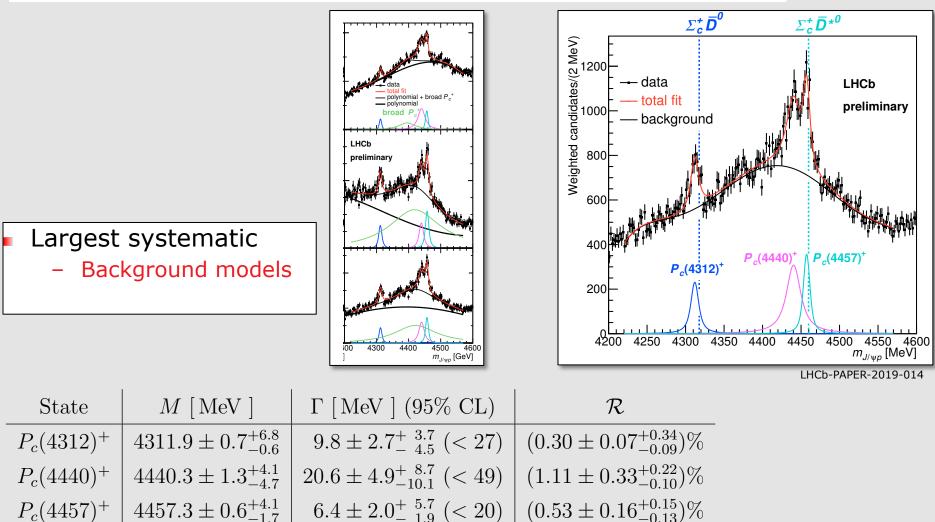
Source	$ A_0 ^2$	$ A_{\perp} ^2$	$\phi_s \; [\mathrm{rad} \;]$	$ \lambda $	$\delta_{\perp}-\delta_0 \; [{\rm rad} \;]$	$\delta_{\parallel} - \delta_0 \; [\mathrm{rad} \;]$	$\Gamma_s - \Gamma_d \; [\mathrm{ps}^{-1} \;]$	$\Delta \Gamma_s \; [\mathrm{ps}^{-1} \;]$	$\Delta m_s [\mathrm{ps}^{-1}]$
Mass width parametrisation	0.0006	0.0005	-	-	0.05	0.009	-	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	-	0.02	0.033	-	0.0003	0.001
$C_{\rm SP}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Quadratic OS tagging	-	-	-	-	-	-	-	-	-
Time res.: statistical	-	-	-	-	-	-	-	-	-
Time res.: prompt	-	🗗	-	-	-	0.001	-	-	0.001
Time res.: mean offset	-		0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: Wrong PV	-		_	-	-	0.001	-	-	0.001
Ang. acc.: statistical	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	-	0.002	0.0002	0.0001	-
Ang. acc.: $t \& \sigma_t$ dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dectime eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dectime eff.: $\Delta \Gamma_s = 0$ sim.	0.0001	0.0002	-	-	-	-	0.0000	0.0005	-
Dectime eff.: knot pos.	-	-	-	-	-	-	-	-	-
Dectime eff.: p.d.f. weighting	-	-	-	-	-	-	0.0001	0.0001	-
Dectime eff.: kin. weighting	-	-	-	-	-	-	0.0002	-	-
Length scale	-	-	-	-	-	-	-	-	0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018



LHCb-PAPER-2019-013

 $1943 \pm 49 \ B^+ \to K^+ \mu^+ \mu^-$

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

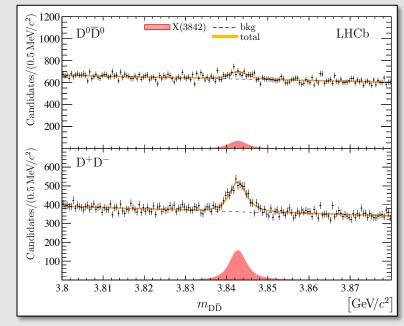


LHCb-PAPER-2019-009, arXiv:1903.09252

Exotics (Pentaquark)

246
k $\Lambda_b^0 \to J\!/\psi \, p K^-$

 $\mathcal{R} \equiv \mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi \, p) / \mathcal{B}(\Lambda_b^0 \to J/\psi \, p K^-)$

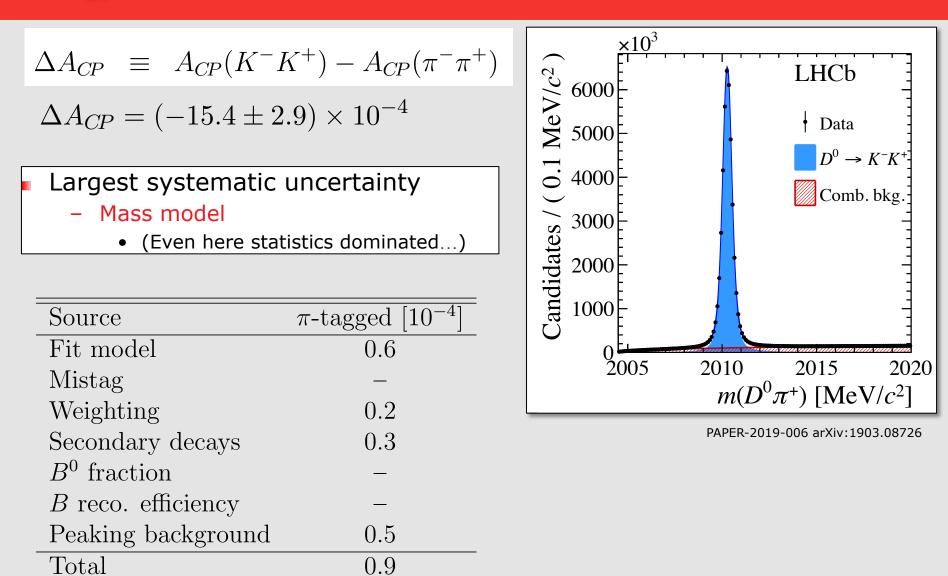

Therefore, verification of the $P_c(4380)^+$ awaits completion of the amplitude analysis of this new data sample.

Exotics (Tetraquark) 2070 ± 190 X(3842) \rightarrow D⁺D⁻

 $m_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$ $\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV},$

Largest systematic

- D mass
- Resolution



LHCb-PAPER-2019-005

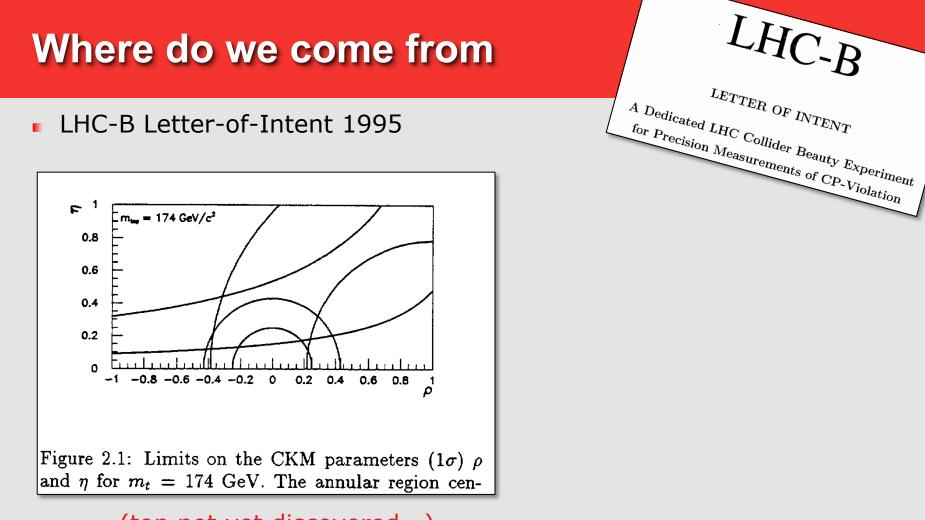
	X(38)	842)
Source	σ_m	σ_{Γ}
	$[MeV/c^2]$	[MeV]
Signal model	0.02	0.02
Resolution		0.31
Background model		0.13
Momentum scale	0.07	
D-meson masses	0.10	
Sum in quadrature	0.12	0.35

53 million $D^0 \rightarrow K^- K^+$

Lessons learned from LHCb

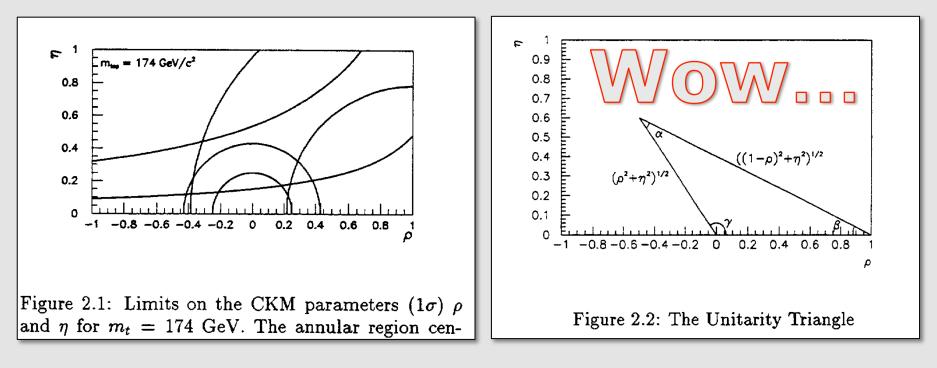
Lots of "lessons" learned on wide span of flavour physics

- CP violation
- Leptons
- Charm
- Exotica


No obvious experimental shortcoming emerging, which prevents further improvements

On the menu

- Introduction: Precision measurements
- Recent highlights
- Where do we come from?
- What brought us here?
 - Lumi levelling
 - Trigger
 - Magnet flips
 - Data driven
 - Tracking
 - PID
 - Control channels


Lessons learned from LHCb

Some history

(top not yet discovered...)

Letter-of-Intent 1995

Letter-of-Intent 1995:

- Annual event yield estimates:
 - $N(B_s^0 \rightarrow J/\psi \phi) = 246k$
 - $\mathsf{N}(B^0_s \rightarrow \mu^+ \mu^-) = 30$
 - $\mathsf{N}(B^0 \rightarrow K^* \mu^+ \mu^-) = 17\mathsf{k}$
 - Assuming L=1.5 x 10³² cm⁻²s⁻¹
- Achieved:
 - 3x larger instantaneous luminosity
 - 2x lower event yields

<u> </u>			_
Event Sample	Visible	Events	
	B.R.	On Tape	1
$B_d \rightarrow \pi^+\pi^- 0.5 \times 10^{-5}$	$2.0 \cdot 10^{-5}$	110k	
$B_d \rightarrow J/\psi K_s^\circ (\mu\mu)$	$2.1 \cdot 10^{-5}$	340k	
$B_d \rightarrow J/\psi K_s^o (ee)$	$2.1 \cdot 10^{-5}$	183k	
$B_d \rightarrow J/\psi K^* (\mu \mu)$	$6.3 \cdot 10^{-5}$	1,270k	
$B_d \rightarrow J/\psi K^* (ee)$	$6.3 \cdot 10^{-5}$	679k	
$B_d \rightarrow \bar{D}^0 K^* (K \pi K \pi)$	$8.0 \cdot 10^{-7}$	3k	0
$B_s \rightarrow D_s^- \pi^+$	$1.4 \cdot 10^{-4}$	171k	Same?
$B_{c} \rightarrow D^{-} \pi^{+} \pi^{+} \pi^{-}$	$3.5 \cdot 10^{-4}$	277k	Sal
$B_s \rightarrow D_s^- K^+$	$1.1 \cdot 10^{-5}$	13k	
$B_s \rightarrow D_s^+ K^-$	$5 \cdot 2 \cdot 10^{-6}$	6k	
$B_s \rightarrow J/\phi \phi (\mu \mu)$	$4.2 \cdot 10^{-5}$	246k	
$B_s \rightarrow J/\psi \phi \ (ee)$	$4.2 \cdot 10^{-5}$	133k	
$B_s \rightarrow \mu^+ \mu^-$	4.0 . 10 -9	10⁻³? 30	
$B_d \rightarrow \mu^+ \mu^- K^*$	$2.9 \cdot 10^{-6}$	17k	
$B_u \rightarrow \bar{D}^0 K^+ (K\pi)$	$1.5 \cdot 10^{-5}$	76k	
$B_u \rightarrow \bar{D}^0 K^+ (K \pi \pi \pi)$	$3.1 \cdot 10^{-5}$	117k	

Table 1.1: The calculated number of "Events on Tape" in single-interaction bunch crossings, using the Level-1 and Level-2 trigger efficiencies from Chapt. 10 $\mathcal{L} = 1.5 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, and assuming no losses in Level-3. Note that reconstruction and tagging efficiencies are not included in this table. For $B_d \rightarrow \pi^+\pi^-$ the branching fraction, 2×10^{-5} , is used, as it has become the "standard" for comparing different experiments. Recent measurements[11] indicate that the actual value may be smaller. The predicted branching fraction for $B_s \rightarrow \mu^+\mu^-$ is from Ref. [12].

- Technical Proposal 1998
 - Event yields closer...
 - Assuming L=2 x 10³² cm⁻²s⁻¹

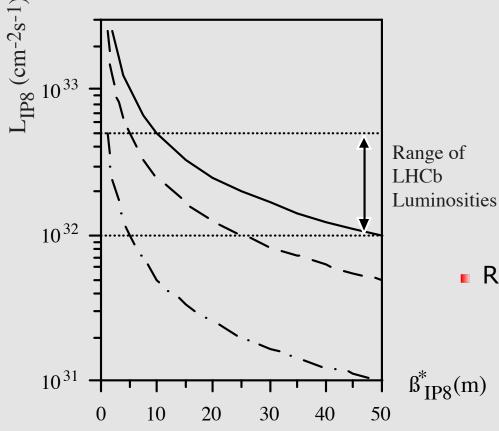


Table 1.1: Expected numbers of events reconstructed offline in one year (10^7 s of data taking) with an average luminosity of 2×10^{32} cm⁻² s⁻¹, for some channels.

Decay	Visible	Offline
Modes	Br. fraction	Reconstr.
$B_d^0 \rightarrow \pi^+\pi^- + tag$	0.7×10^{-5}	6.9 k
$B_d^{\bar{0}} \rightarrow K^+ \pi^-$	$1.5 imes 10^{-5}$	33 k
$B_d^{\bar{0}} \rightarrow \rho^+ \pi^- + tag$	$1.8 imes 10^{-5}$	551
$B_d^{\bar{0}} \rightarrow J/\psi K_S + tag$	$3.6 imes10^{-5}$	56 k
$B_d^{\overline{0}} \rightarrow \overline{D}{}^0 K^{*0}$	$3.3 imes 10^{-7}$	337
$B_d^{\vec{0}} \to K^{*0}\gamma$	$3.2 imes 10^{-5}$	26 k
$B_s^0 \rightarrow D_s^- \pi^+ + tag$	$1.2 imes 10^{-4}$	$35 \mathrm{k}$
$B_s^0 \rightarrow D_s^- K^+ + tag$	8.1×10^{-6}	$2.1 \mathrm{k}$
$B_s^0 \to J/\psi \phi + tag$	$5.4 imes 10^{-5}$	44 k

- Reoptimized LHCb (TDR 2003)
 - Assuming <u>average</u> L= 2 x 10³² cm⁻²s⁻¹

teraction point. The luminosity L is assumed to decrease exponentially with a 10-hour lifetime in the course of 7-hour fills, with an average value of $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (implying a maximum value of $\sim 2.8 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ at start of fill). In practice,

What brought us here? Lumi levelling

- Trade-of between
 - High L: statistics
 - Low L: clean events
 - + higher data rate! Network is limited by (rate x multiplicity)

What brought us here?

Lumi levelling

- Trade-of between
 - High L: statistics
 - Low L: clean events

Luminosity Leveling by Collision Offset minosity leveling applied several times during 2010

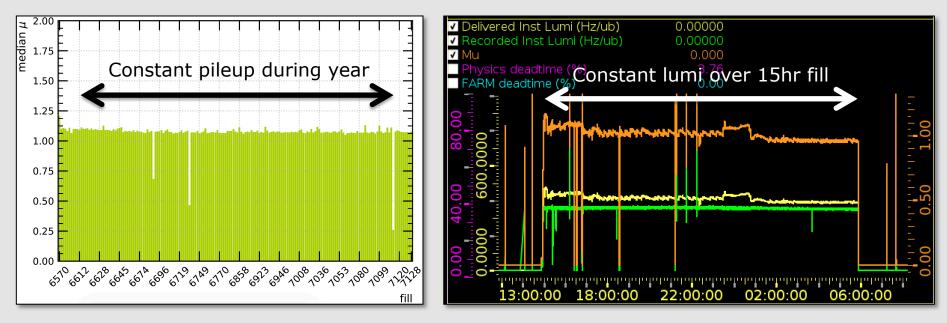
- - In the steps between trigger configurations
 - Followed bunch behaviour with VELO/BLS and no sign of problems

Richard Jacobsson, Dec 2010

Operate continuously at constant optimal L !

What brought us here?

Lumi levelling


- Trade-of between
 - High L: statistics
 - Low L: clean events

Luminosity Leveling by Collision Offset

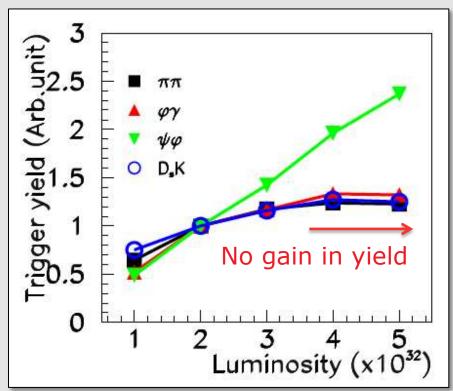
- -Zuminosity leveling applied several times during 2010
 - First time on July 17 and July 18
 - In the steps between trigger configurations
 - Followed bunch behaviour with VELO/BLS and no sign of problems

Richard Jacobsson, Dec 2010

- Operate continuously at constant optimal L !
 - Displace beams at start of fill, then move closer when protons disappear
 - In 2018 also employed by ATLAS/CMS

What brought us here? Low sys or low stats?

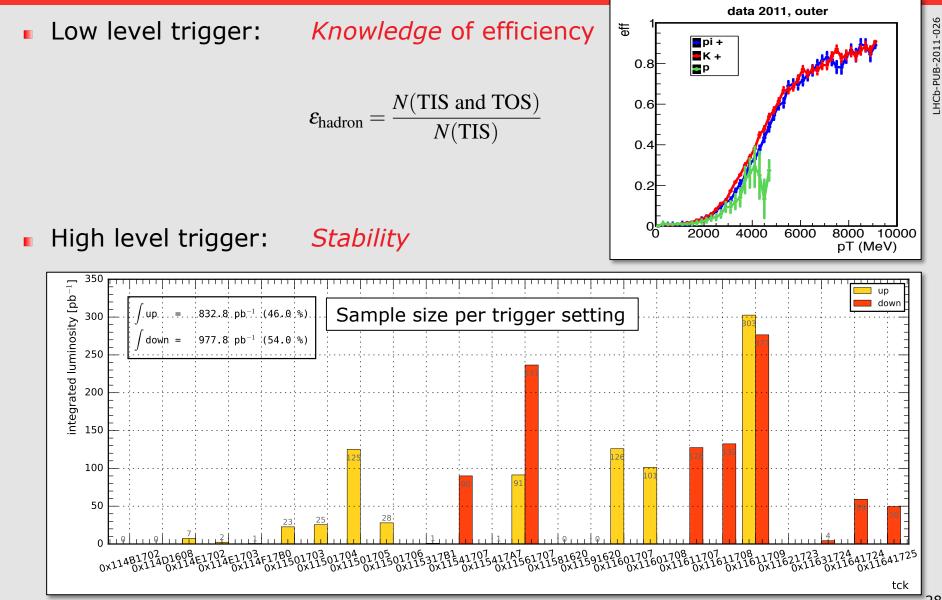
Main physics results dominated by statistical uncertainty (run-1) :


Observ	able	Current LHCb	σ(stat)/σ(sys)	Largest source of systematic
EW P	enguins			
R_K	$\hat{0.745} \pm 0.09$	90 ± 0.036 [274]	2.5	Mass shape & trigger eff
$R_{K^{*0}}$	0.69 ± 0	0.11 ± 0.05 [275]	2.2	MC correction & residual bkgd
				C C
CKM	tests		3	Δm_{s} , time res, tagging, det asymmetry
γ , with	$B^0_s \to D^+_s K^-$	$(^{+17}_{-22})^{\circ}$ [136]		Zin _s , time res, tagging, act asymmetry
γ , all n		$\binom{-22}{+5.0}$ ° [167]	•	Deserve dings and affinishing and
	with $B^0 \to J/\psi K_{\rm s}^0$	$0.04 \ [609]$	8	Decay time: bias and efficiency
	h $B_s^0 \to J/\psi\phi$	49 mrad [44]	8	Angular efficiency
, ,	$h B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	8	Decay time resolution
	ith $B_s^0 \to \phi \phi$	154 mrad [94]	5	Acceptance (angular and time)
$a_{\rm sl}^s$	· • 1	33×10^{-4} [211]	1.3	Track reco asymmetry
$ V_{ub} / V_{ub} $	$\langle cb $	6% [201]	0.5	External BR(A _c)
	$^{D}\!\! ightarrow\!\mu^{+}\mu^{-}$			
$\mathcal{B}(B^0 -$	$\overline{\rightarrow \mu^+ \mu^-)} / \mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-)$	$90\% \ [264]$	6	f_d/f_s
$\tau_{B^0_s \to \mu^+}$	$-\mu^-$	22% [264]	9	Decay time acceptance
$\begin{array}{c c c c} T & \tau_{B_s^0 \to \mu^+} \\ S_{\mu\mu} & S_{\mu\mu} \end{array}$		-	, ,	Decay time acceptance
$b \rightarrow c$	$\ell^- \bar{\nu_l} \ \mathrm{LUV} \ \mathrm{studies}$			
$\overline{R(D^*)}$	C C	0.026 [215, 217]	1	MC sample size
$R(J/\psi)$)	0.24 [220]	1	$F(B_c \rightarrow J/\psi)$ form factor
<u>Charn</u>	, ,			
	$(KK - \pi\pi)$	8.5×10^{-4} [613]	2.7	Mass model
	$x\sin\phi$)	2.8×10^{-4} [240]	2.8	Contribution from sec b→D*X decays
	from $D^0 \to K^+ \pi^-$	13×10^{-4} [228]	2	Contribution from sec b→D*X decays

Physics Case for an LHCb Upgrade II, CERN-LHCC-2018-027

26

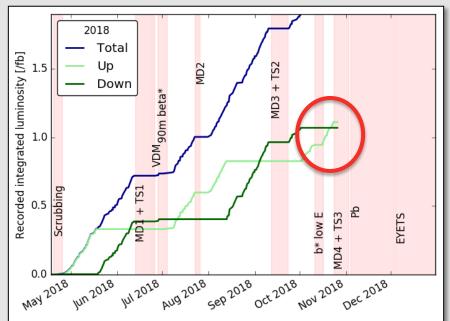
Event sample size, aka statistics


- Sample size ~ trigger eff x luminosity
- Increasing luminosity implies tighter trigger selection...
 - Marginal gain...
 - Trigger yield is flat:

Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011-001

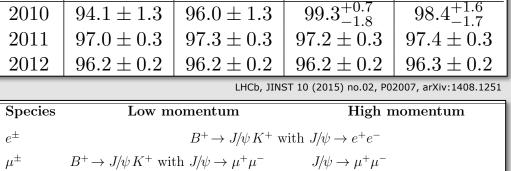
Solution: *improve the trigger*

What brought us here? Trigger


What brought us here?

- Magnet flips
- Many precision measurements rely on asymmetries
 - Charge asymmetries
 - Angular asymmetries
 - Differences of asymmetries
- D0 could do A_{fs}, CDF not

What brought us here? Magnet flips


- Many precision measurements rely on asymmetries
 - Charge asymmetries
 - Angular asymmetries
 - Differences of asymmetries
- D0 could do A_{fs}, CDF not
- Detector asymmetries cancel by flipping the magnet polarity
 - Carefully matched the two data sets

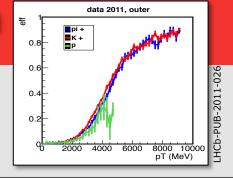
	Recorded Lumi (pb ⁻¹)
UP	1110
DOWN	1070
Total	2180

What brought us here? Data driven

- L0 calorimeter efficiency
 - Using $D^0 \rightarrow K^-\pi^+$, $B^0 \rightarrow J/\psi(ee)K^*$
- Tracking efficiency
 - Tag-and-probe with $J/\psi \rightarrow \mu^+\mu^-$
- Particle identification
 - Dedicated control samples

Negative

Magnet up

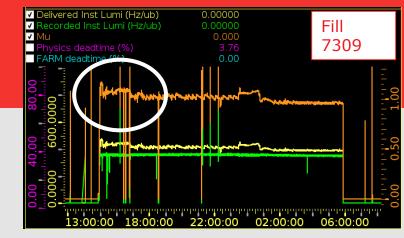

Positive

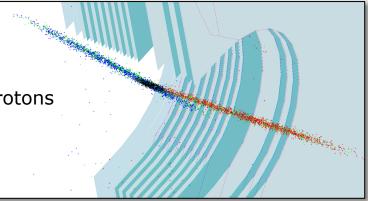
Data

$$\begin{aligned} \pi^{\pm} & K^0_{\rm s} \to \pi^+ \pi^- & D^{*+} \to D^0 \pi^+ \text{ with } D^0 \to K^- \pi^+ \\ K^{\pm} & D^+_{s} \to \phi \pi^+ \text{ with } \phi \to K^+ K^- & D^{*+} \to D^0 \pi^+ \text{ with } D^0 \to K^- \pi^+ \\ p, \, \overline{p} & \Lambda^0 \to p \pi^- & \Lambda^0 \to p \pi^-; \, \Lambda^+_c \to p K^- \pi^+ \end{aligned}$$

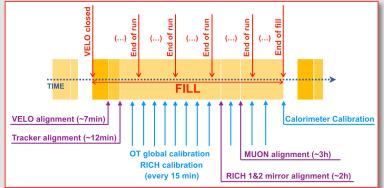
LHCb, EPJ Tech.Instrum. 6 (2019) 1, arXiv:1803.00824

- Control channels for analyses:
 - $B^0 \rightarrow J/\psi K^*$ for $B^0_s \rightarrow J/\psi \phi$
 - $B^0 \rightarrow J/\psi K^+$ for $B^0 \rightarrow K^+ e^+ e^-$
 - $B^0 \rightarrow D^-\pi^+$ for $B^0_s \rightarrow D_s^-\pi^+$
 - $B^0_s \rightarrow D_s^- \pi^+$ for $B^0_s \rightarrow D_s K$


Magnet down

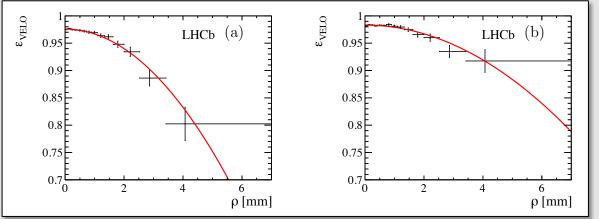

Negative

Positive


Lessons from operations

- Luminosity monitoring
 - Dependent on single detector:
 - failure requires timely understanding
 - Implement more robust monitoring
- Luminosity measurement
 - Gas injection system extremely valuable
 - ATLAS/CMS relied on LHCb for LHC satellite protons
 - Keep (and improve) gas injection system

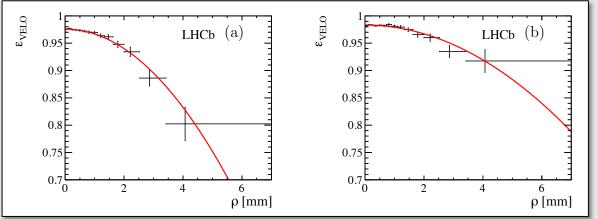
- Monitoring
 - Occasionally detector problems or bugs could have been caught faster
 - More precise monitoring of all trigger rates
- Real time alignment
 - Events are parked at 100 kHz
 - Selection to 5 kHz after event calibration
 - 1-to-1 correspondence to offline

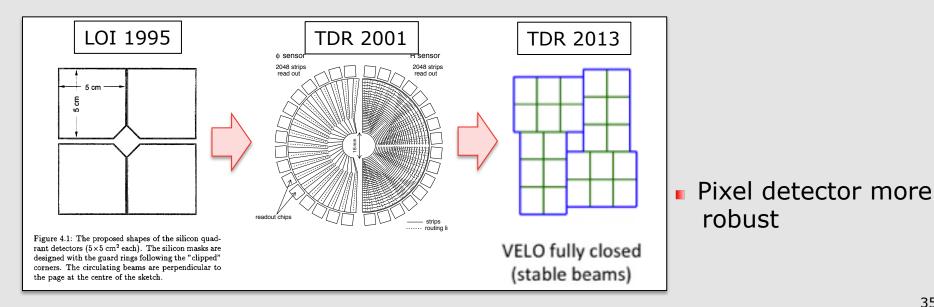


Lessons from/for analysis

- $B \rightarrow J/\psi X$
 - Time acceptance
- $B \rightarrow Ke^+e^-$
 - Bremstrahlung correction
- Time-dependent B⁰_s analysis
 - Flavour tagging:
 - Incl tagging?
 - OT time? PID coverage (p_T, eta)?
- Open Charm
 - magnet polarity
 - Crossing angle
- Electro-weak, jets
 - HCAL PMT gain
- Heavy-ion:
 - Simultaneous operation of pp and pPb

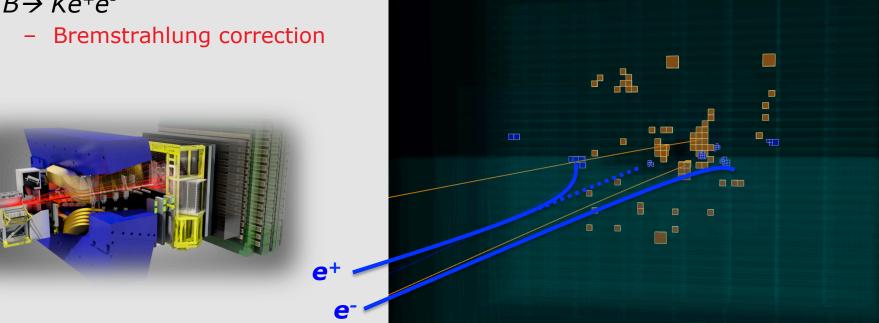
Lessons from/for analysis: Decay time acc

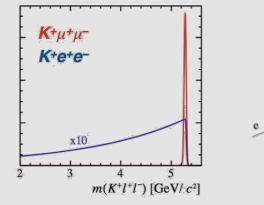

- $B \rightarrow J/\psi X$
 - Time acceptance
 - Long living B mesons
 - Decay off-axis
 - Pattern recognition less efficient

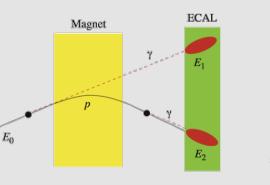

LHCb, arXiv:1402.2554, Measurements of the B⁺, B⁰, B_s⁰ meson and Λ^0_{b} baryon lifetimes

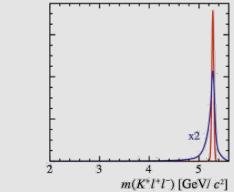
Lessons from/for analysis: Decay time acc

- $B \rightarrow J/\psi X$
 - Time acceptance
 - Long living B mesons —
 - Decay off-axis
 - Pattern recognition less efficient

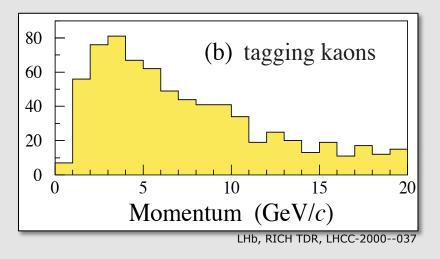


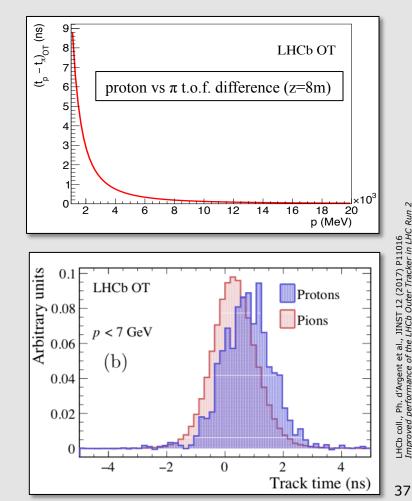

LHCb, arXiv:1402.2554, Measurements of the B⁺, B⁰, B_s⁰ meson and Λ_{b}^{0} baryon lifetimes




Lessons from/for analysis: Bremstrahlung

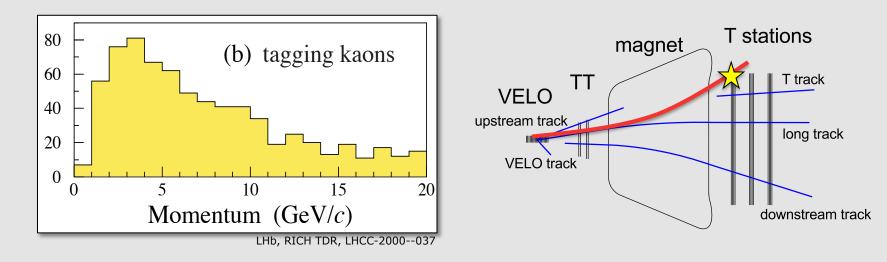
 $B \rightarrow Ke^+e^-$





Lessons from/for analysis: Flavour tagging

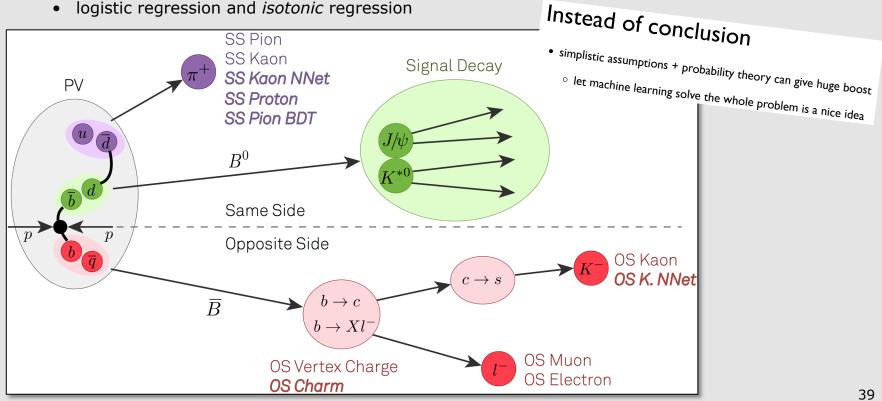
- Tagging: from fragmentation \rightarrow low momentum
- Outer Tracker time resolution: ~0.6 ns / track
 - Time-of-flight difference proton vs pion at z=8m: ~1 ns



Use of timing has the future

Lessons from/for analysis: Flavour tagging

- Tagging: from fragmentation \rightarrow low momentum
- Improve coverage for low momenta

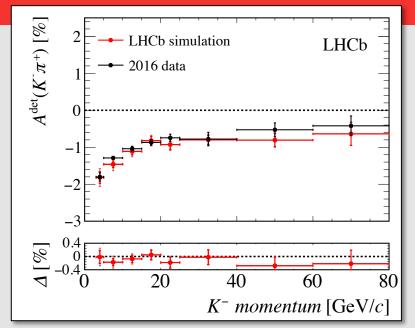


- No extra detectors in run-3 yet
- Could use tracks with single hit in T stations
 - Also useful for high-multiplicity decays
 - D*+→D⁰π⁺
 - D⁰→Кппп
 - *B→DD*

Lessons from/for analysis: Flavour tagging

D.Derkach, T.Likhomanenko, A.Rogozhnikov, IML workshop, March 2017

- Inclusive tagging
 - use all (non-signal) tracks from event
 - let machine guess <u>which</u> tracks are tagging & <u>how</u> charge is connected to flavour
 - estimate probability
 - decisionTrain uses oblivious tree
 - adaptive versions of stochastic gradient descent
 - Tagging with *attention* (by assigning weights in a *softmax*-like manner)
 - logistic regression and *isotonic* regression

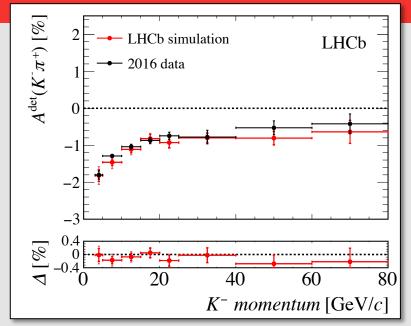


Lessons from/for analysis: Charm

- Huge statistics
 - Asymmetry of kaon interaction rate

 $\begin{aligned} A^{\text{det}}(K^{-}\pi^{+}) &= (-0.89 \pm 0.15 \,(\text{stat}) \pm 0.06 \,(\text{syst}))\% \text{ in } 2015, \\ A^{\text{det}}(K^{-}\pi^{+}) &= (-1.03 \pm 0.06 \,(\text{stat}) \pm 0.06 \,(\text{syst}))\% \text{ in } 2016. \end{aligned}$

- Magnet polarity
 - Take equal samples


LHCb-PUB-2018-004, Measurement of the instrumental asymmetry for K⁺+-pairs at LHCb in Run 2

Lessons from/for analysis: Charm

Huge statistics

- Asymmetry of kaon interaction rate

 $A^{\text{det}}(K^{-}\pi^{+}) = (-0.89 \pm 0.15 \text{ (stat)} \pm 0.06 \text{ (syst)})\% \text{ in } 2015,$ $A^{\text{det}}(K^{-}\pi^{+}) = (-1.03 \pm 0.06 \text{ (stat)} \pm 0.06 \text{ (syst)})\% \text{ in } 2016.$

Crossing angle

- "Internal" crossing angle flips with magnet polarity

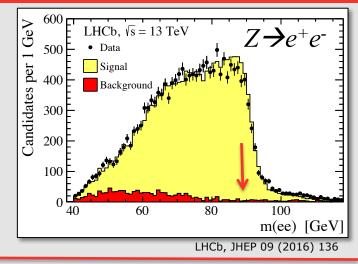
LHCb-PUB-2018-004, Measurement of the instrumental asymmetry for K⁺+-pairs at LHCb in Run 2

- causes an asymmetry when averaging over magnet polarities
- <u>Ideal scenario</u>: change of external crossing angle to compensates internal crossing angle

identical total angle for both polarities

Year	$\theta_x^{internal} \; [\mu rad]$	$\theta_x^{external} \; [\mu rad]$	$\theta_y^{external} \ [\mu rad]$
2011	270	-250	0
2012	236	0	100
2015	145	-250	0
2016	145	-250	0

Source	Particles	$\mathcal{O}[\%]$
Cross-sections	π^+, K^+, p	0, 1, 3
IT cables	Hadrons, e	0.2
OT geometry	All	0.2
Beam spot	All, small for muons	0.2
Velo geometry	All	0.3
Beam crossing angle	All	0.5
Inner tracker defects	All	0.1


Lessons from/for analysis: Jets, Heavy lons

<u>Jets</u>

- B decay products:
- Jets:

lower energy scale higher energy scale

- Increase calorimeter dynamic range?
 - More noise, worse Bremstrahlung recovery...

Heavy Ions

Lessons from/for analysis: Jets, Heavy lons

<u>Jets</u>

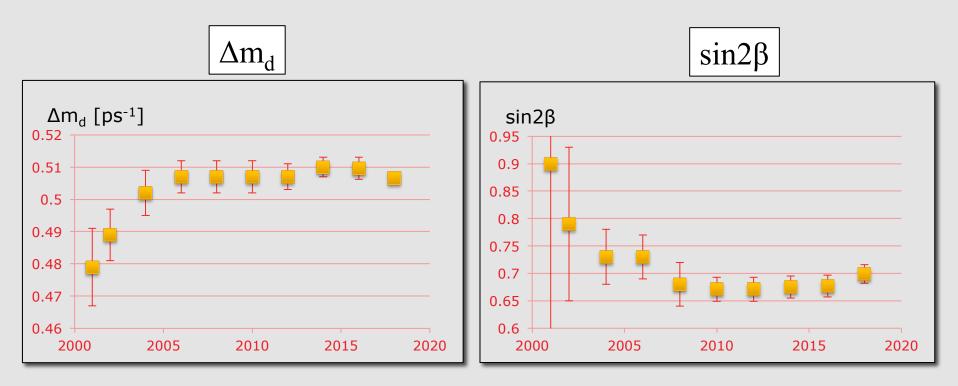
Heavy Ions

Rich programme:

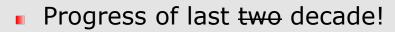
- Pb-Pb collider
- P-Pb collider
- p fixed target
- Pb fixed target
 - He, Ne, Ar targets
- Simultaneous operation (non-)colliding bunches

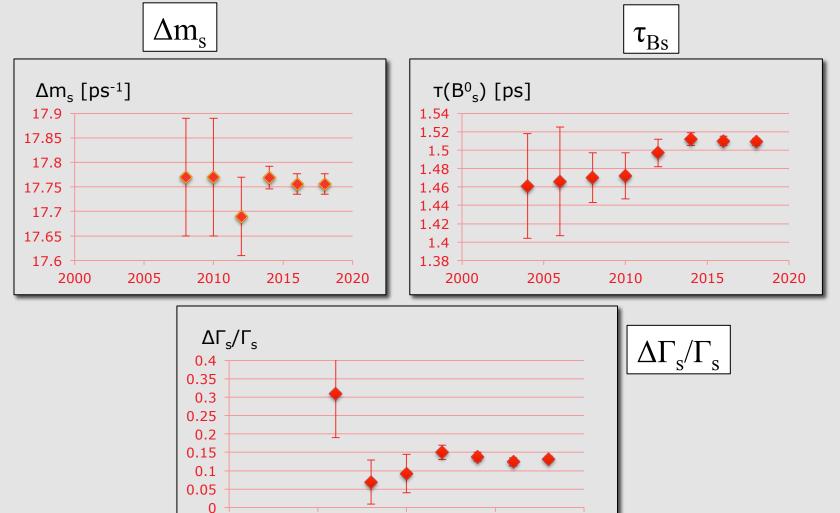
E (Z TeV)	√s _{nn}					
	pp)	Pb-p)	Pb-	Pb
	$\sqrt{s}=2E$		$\sqrt{s}=2E\sqrt{r}$		$\sqrt{s}=2Er$	
1.38	2.76	2013				
2.51	5.02	2015 2017				
3.5	7	2011	4.40		2.76	2010 LHCb off
4	8	2012	5.02	2013 2016	3.15	
6.37			8.00		5.02	2015 2018
6.5	13	2015- 2018	8.16	2016	5.13	

Lesson learned...: Errata

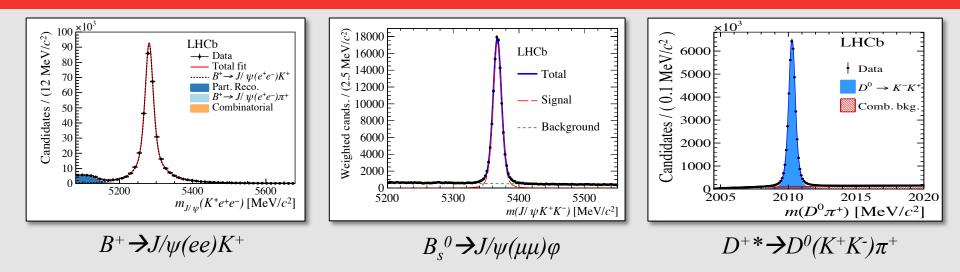

15 errata

- 4 errata: VELO simulation mistake
- 2 errata: bugs
- 9 errata: minor
- Only small fraction of all papers! But need to stay vigilant

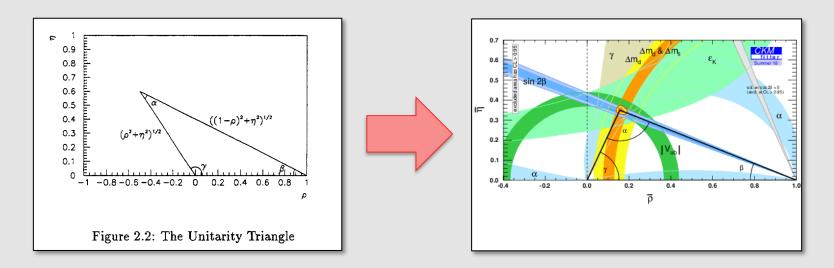

Title	Erratum	Mistake	Effect
Measurement of CKM angle gamma in $B \rightarrow DK$	JHEP 1810 (2018) 107	Figure: label	Minor
Measurement of CP observables in $B \rightarrow DK^*$	JHEP 1805 (2018) 067	Wrong systematics	No consequence
Measurement of the J/ ψ pair production at 13 TeV	JHEP 1710 (2017) 068	Track eff: double metal layer	Severe
Measurement of the b-quark production at 13 TeV	PRL 119 (2017) 169901	Track eff: double metal layer	Severe
Measurement of charm mixing and CP violation	PRD96 (2017) 099907	Swapped systematics	Minor
Measurement of S-wave fraction and $B^0 \rightarrow K^* \mu \mu$	JHEP 1704 (2017) 142	Eff: fast sim, and $m_{\rm Kn}$ range	~10%
Constraints on UT angle gamma from $B \rightarrow DK \pi$	PRD94 (2016) 079902	Figure: contours	Minor
First observation of the rare $B \rightarrow DK\pi$ decay	PRD93 (2016) 119902	Value 10 ⁻⁴ instead of 10 ⁻⁶	Туро
Measurements of prompt charm production at 13 TeV	JHEP 1705 (2017) 074	Track eff: double metal layer	Severe
Measurement of forward J/ ψ production at 13 TeV	JHEP 1705 (2017) 063	Track eff: double metal layer	Severe
Measurement of the ratio of BR RD*	PRL 115 (2015) 159901	Incorrect asterisk	Туро
Differential BR and angular analysis of $\Lambda_b \rightarrow \Lambda \mu \mu$	JHEP 1809 (2018) 145	Sign mistake for Λ_{b} bar	Severe
First observation and amplitude analysis of $B{\rightarrow} DK\pi$	PRD93 (2016) 119901	Value 10 ⁻⁴ instead of 10 ⁻⁶	Туро
Observation of CP violation in $B \rightarrow DK$ decays	PLB713 (2012) 351	Publisher: twice same fig	Туро
Measurements of BR of $B \rightarrow D \Pi \Pi \Pi \Lambda_b \rightarrow \Lambda_c \Pi \Pi$	PRD85 (2012) 039904	Typo on "%" and charges	Туро


Lessons learned from LHCb

Progress of last two decades!



Lessons learned from LHCb



Lessons learned from LHCb

Precision physics is possible at forward hadronic experiment

Lessons learned from LHCb about making precise flavour measurements

Operations:

	All:	Trigger	stability,	monitoring
--	------	---------	------------	------------

- Elec: L0 ECAL constants
- HCAL: mu
- Elec: Bremstrahlung correction July 2016
- Bunch lengthening Vtx:
- Real time alignment (Muon Null alignment Aug 2018) All:
- All: More bugs: TISTOS, ALLSAMEBPV 2018, FT SSp Sspi SMOG
- Lumi:

MC:

- VFI O: double metal layer, x-sec (erratum)
- Muon: 2011 acceptance (?)
- SL: MC stats

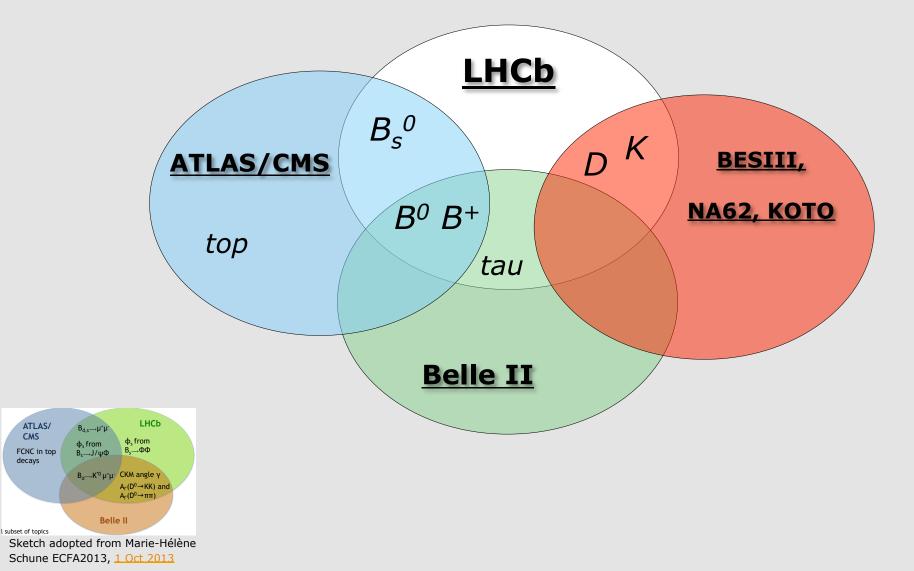
Analysis:

- B2OC: L0 had eff
- RD: ang analysis K*mumu (erratum)
- B2CC: Time acceptance, beta factor (VeloPIX)
- OT time? Incl tagging? PID coverage PIDCALIB pT eta? Flavour tagging:
- Charm/SL: magnet polarity, DeltaACP, see Laurent!
- QEE: HCAL PMT gain
- IFT: Simultaneous operation of pp and pPb

The need for more precision

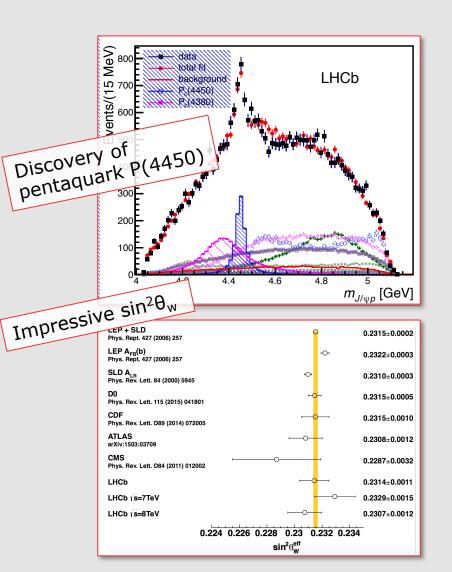
Imagine if Fitch and Cronin had stopped at the 1% level, how much physics would have been missed"

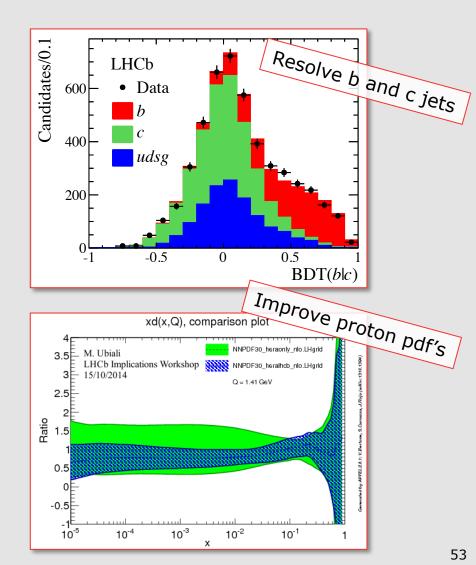
– A.Soni

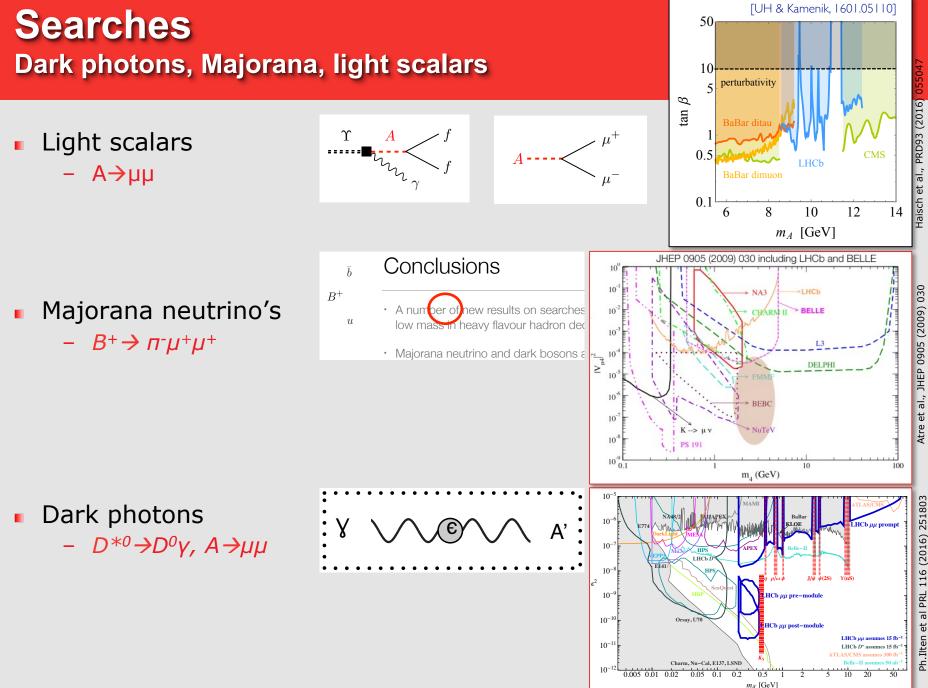

• "A special search at Dubna was carried out by Okonov and his group. They did not find a single $K_L^0 \rightarrow \pi^+\pi^-$ event among 600 decays into charged particles (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the lab. The group was unlucky."

– L.Okun

(remember: $B(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}) \approx 2 \ 10^{-3})$


Playing field: heavy flavour


decays



LHCb = more than flavour

pdfs, jets, heavy-ion, EW, exotic states...

