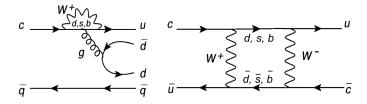
Rare Charm Decays and asymmetries Towards the Ultimate Precision in Flavour Physics Durham - UK

Andrea Contu


INFN

2 April 2019

Why study rare charm processes?

- Up-type quark: unique probe of NP in the flavour sector, complementary to studies in K and B systems
- Rare processes are very suppressed in the SM

- New Physics may be hidden in the loops
- Challenging due to large long-distance contributions, precise theoretical predictions are difficult

Charm Rare Decays

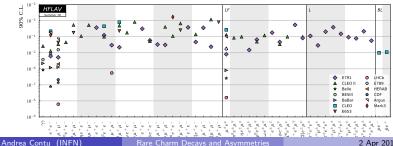
Wide variety of physics, ranging from forbidden to not-so-rare decays

$D^0 ightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \rightarrow \pi^- \pi^+ V(\rightarrow ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(s)}^{(3)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D_s^+ \to \pi^+ \phi(\to ll)$
(-)	$D^0 \rightarrow K^{*0} l^+ l^-$	$D^0 \to \phi \ V(\to ll)$	$D_{\rm s} \rightarrow \pi \ \varphi(\rightarrow \pi)$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LFV, LNV,	BNV			FC	NC				VMD		Radia	itive
$\begin{array}{cccc} D^0 \to X^0 \mu^+ e^- & D^0 \to ee & D^0 \to \rho \ t^{+} ^- & D^0 \to K^- \pi^+ V(\to ll) \\ D^0 \to X^{1} t^{++} & D^0 \to K^+ K^- l^+ l^- & D^0 \to K^+ 0 V(\to ll) \end{array}$	0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³									
$D \rightarrow \phi \uparrow I$	$D^0 \rightarrow X^0 \mu^+ e^-$			D^0	$\rightarrow ee^{D^0}$		$D^0 \rightarrow \rho$	+ - 'K-l+l-	$D^0 \rightarrow$	K V(→	·II) L	$D^0 \rightarrow K^- \pi$	$r^+V(\rightarrow ll)$

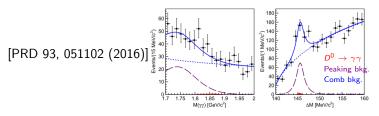
[PRD 66 (2002) 014009]

Short distance contributions to effective $c \rightarrow u$ transitions are tiny, branching fractions dominated by long distance contributions SM predictions for the short distance part are normally $BF < 10^{-9}$, getting there...

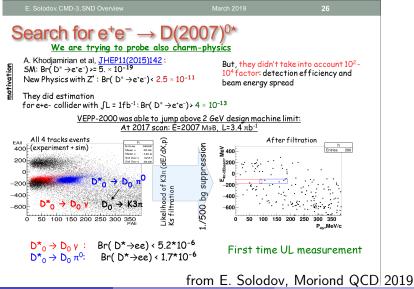

Charm samples

Hicp			ABAR	€SⅢ	
Туре	Exp	\sqrt{s}	Lint	$\sigma(c\bar{c})$	$N(c\overline{c})$
			prompt o	cē	
Hadron colliders	LHCb CDF	7, 8 TeV 13 TeV 2 TeV	3/fb 6/fb 10/fb	1.4 mb 2.6 mb 0.1 mb	$\begin{array}{c} 3.6\times 10^{12} \\ 13.2\times 10^{12} \\ 2.3\times 10^{11} \end{array}$
	CDI	-	from cont		2.5 × 10
e^+e^- collider	Belle BaBar	10.6 GeV 10.6 GeV	1/ab 550/fb	1.3 nb 1.3 nb	$\begin{array}{c} 1.3\times10^9\\ 0.7\times10^9\end{array}$
		Charm fac	ctories at <i>l</i>	$Dar{D}$ thresho	old
	BESIII Cleo-c	3.7 GeV 3.7 GeV	3/fb 0.8/fb	3 nb 3 nb	$\begin{array}{c} 20\times10^6 \\ 5\times10^6 \end{array}$

Where do we stand?

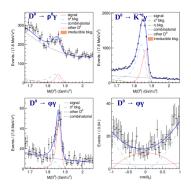

• LHCb:

- Rarest accessible modes are decays into two muons $+ \geq 0$ charged hadrons
- Final state with e/γ harder but not impossible
- Large production cross section ensures every measurement is likely a world best
- BaBar/Belle/BelleII:
 - Best for $D^0
 ightarrow V\gamma$ and electron modes
 - Only hope for $D^0 o \gamma \gamma$


$$D^0
ightarrow \mu^+ \mu^-$$
 and $D^0
ightarrow \gamma \gamma^-$

- NP could appear in BF enhancements
- Only limits so far:
 - $D^0 \rightarrow \gamma \gamma \sim 10^{-8}$ in the SM but up to 10^{-6} in NP scenarios. Best limit from Belle at $\mathcal{B}(D^0 \rightarrow \gamma \gamma) < 8.5 \times 10^{-7}$ at 90% CL

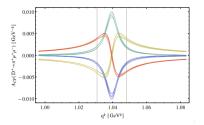
 D⁰ → μ⁺μ⁻ is also helicity suppressed. In the SM is actually constrained by the limit above to about 10⁻¹² (main contribution to the BF comes from a long distance γγ recombination) Best limit from LHCb at 7.6 × 10⁻⁹ at 90% CL, 1/fb only [PLB 725 (2013) 15-24]. Update is being worked on!

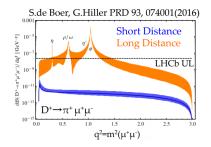

Thinking differently...

2 Apr 2019 7 / 22

Radiative charm decays [PRL 118, 051801 (2017)]

- Measuring the BFs tests QCD based calculations of long distance dynamics
- Can probe New Physics when measuring A_{CP} (around 10^{-3} in the SM, up to several percent in NP scenarios)
- Belle measured BF and A_{CP} for all these modes

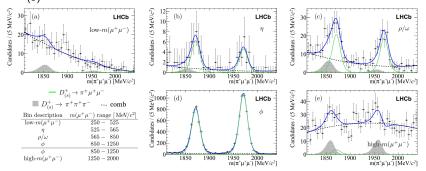



$$\begin{array}{c} \mbox{First observation} \\ \mathscr{B}\left(D^{0} \to \rho^{0}\gamma\right) = (1.77 \pm 0.30 \pm 0.07) \times 10^{-5}, \\ \mathscr{B}\left(D^{0} \to \phi\gamma\right) = (2.76 \pm 0.19 \pm 0.10) \times 10^{-5}, \\ \mathscr{B}\left(D^{0} \to K^{*0}\gamma\right) = (4.66 \pm 0.21 \pm 0.21) \times 10^{-4}. \\ \mathscr{A}_{CP}\left(D^{0} \to \rho^{0}\gamma\right) = +0.056 \pm 0.152 \pm 0.006, \\ \mathscr{A}_{CP}\left(D^{0} \to \phi\gamma\right) = -0.094 \pm 0.066 \pm 0.001, \\ \mathscr{A}_{CP}\left(D^{0} \to K^{*0}\gamma\right) = -0.003 \pm 0.020 \pm 0.000 \end{array}$$

• Expect some competition from LHCb...

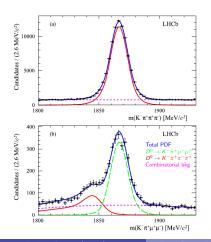
Multibody decays with a dilepton pair

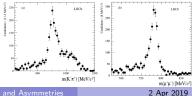
 Decays such as D[±]_(s) → h[±]l⁺l⁻, D⁰ → h⁺h⁻l⁺l⁻ have an overwhelming contribution from long-distance processes, through intermediate vector resonances in the dimuon spectrum



- Unlikely that NP could show up in the branching fraction
- But the richer dynamics allows to investigate *A_{CP}*, *A_{FB}* which can be up to a few percents in some NP scenarios

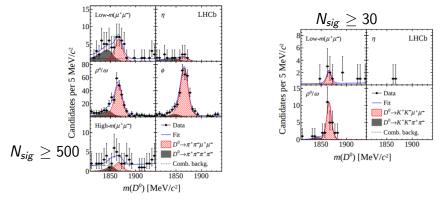
Search for non-resonant $D^\pm_{(s)} o \pi^\pm \mu^- \mu^+$ [PLB724(2013)203-212]


- Limit on non resonant fraction determined from low and high q^2 bins normalised to $D^+_{(s)} \to \pi^{\pm} \phi(\to \mu \mu)$
- LHCb results: $\mathcal{B}(D_{(s)}^{\pm} \to \pi^{\pm}\mu^{-}\mu^{+}) < 0.83(4.8) \times 10^{-7}$, $\mathcal{B}(D_{(s)}^{\pm} \to \pi^{\mp}\mu^{\pm}\mu^{\pm}) \times 10^{-7}$ at 95% C.L.


• Update including electron modes is being worked on

Andrea Contu (INFN)

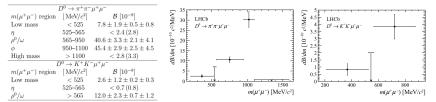
First observation of the decay $D^0 \rightarrow K^- \pi^+ \rho^0 / \omega (\rightarrow \mu^- \mu^+)$ [PLB 757 (2016) 558-567]



- Measurement restricted to $675 < m_{\mu\mu} < 875\,{
 m MeV}/c^2$
- $BF(D^0 \to K^- \pi^+ \mu^- \mu^+) =$ (4.12±0.12_{stat}±0.38_{syst})×10⁻⁶
- In agreement with SM predictions [JHEP 04 (2013) 135]
- Ideal normalisation mode for $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$ [PRL 119 (2017)181805]

• Using 2/fb LHCb made the first observation of $D^0 \to \pi^+\pi^-\mu^+\mu^-$, $D^0 \to K^+K^-\mu^+\mu^-$



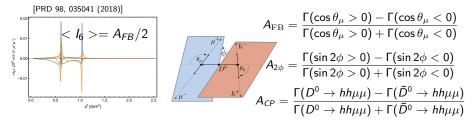
• No attempt is made to distinguish between long and short distance

Andrea Contu (INFN)

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$ [PRL 119 (2017)181805]

• Measure differential and total BF (normalised to $\mathcal{B}(D^0 \to K^- \pi^+ [\mu^+ \mu^-]_{\rho^0/\omega})$ [PLB 757 (2016) 558-567])

• Total branching fractions:

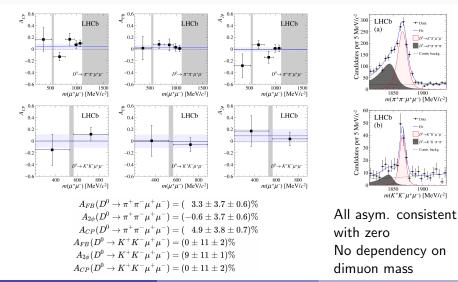

$$\begin{aligned} \mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) &= (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7} \\ \mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) &= (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7} \end{aligned}$$

Rarest charm decays! Compatible with SM predictions [JHEP 04(2013)135]

• Statistics is enough to perform first asymmetry measurements!

Angular and *CP* asymmetries in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays [PRL 121, 091801 (2018)]

- Better suited for CP and NP searches than BF measurements since not restricted to non-resonant regions
- Observables are SM null tests. Asymmetry predictions for some NP model can be up to few % in the vicinity of resonances
 [JHEP 1304 135 (2013)], [PRD 87 054026 (2013)], [PRD 98, 035041 (2018)]



• Measurement performed using 2011-2016 data, both PS integrated and in bins of $m_{\mu\mu}$

Andrea Contu (INFN)

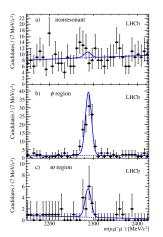
Current status

Angular and *CP* asymmetries in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays [PRL 121, 091801 (2018)]

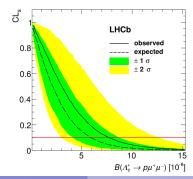
2 Apr 2019 15 / 22

Studies of $D^0 ightarrow (h('))^- h^+ e^+ e^-$ and Babar and BESIII

BESIII: Search for the rare decays $D^0 \rightarrow (h(\prime))^- h^+ e^+ e^-$ [PRD 97 072015 (2018)] D*→ K⁰K*e*e D^{*}→ K⁰a*e*e $D^* \rightarrow \pi^* \pi^0 e^* e^*$ D'-> K'rfeS vent/0.003 GeV/c³) 15 D⁰→ K'K'e'e D⁰→ π*π*e*e D⁰→ K'π*e 3 $D^0 \rightarrow \pi^0 e^+ e$ D⁰ ----- $D^0 \rightarrow \omega e^+e^-$ D⁰→ K₂⁰e¹e 1.86 1.88 1.84 1.86 1.88 1.84 1.86 1.88 1.84 1.86 M^{di}(GeV/c²) Only limits at 10^{-5} level, still a big improvement

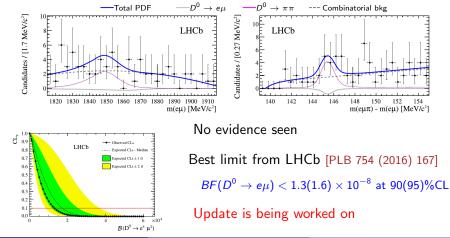

Babar: Observation of the decay $D^0 \rightarrow K^- \pi^+ e^- e^-$ [PRL 122 081802 (2019)] (a) BABAR BARAS 10.00 MeV/c 86 1.88 1.9 m(K⁻π⁺e⁺e⁻) [GeV/c²] $m(e^+e^-)$ [GeV/c²] Observation for $675 < m_{ee} < 875 \,\mathrm{MeV}/c^2$ $BF(D^0 \rightarrow K^- \pi^+ e^- e^-) =$ $(4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$ In agreement with LHCb's $D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$ Limits elsewhere at 10^{-6} level

LHCb should be competitive, or hopefully better (modulo BelleII)


Current status

Search for $\Lambda_c ightarrow p \mu^+ \mu^-$ [PRD 97 091101 (2017)]

• Similar approach to $D_s^+ \rightarrow h^+ \mu^+ \mu^-$ search analysis (split in dimoun mass regions, normalise to ϕ region)



- Significant signal (5 σ) in the ω region
- Best limit on the non-resonant component, ${\cal B}(\Lambda_c o p \mu^+ \mu^-) < 7.7 imes 10^{-8}$ at 90% CL

Lepton flavour violation: search for $D^0 ightarrow e^+ \mu^-$ decay

 LFV is effectively forbidden in the SM but predicted to occur in some NP scenarios

Andrea Contu (INFN)

Rare Charm Decays and Asymmetries

LHCb prospects for existing measurements

(private extrapolations from existing measurements and arXiv:1808.08865)

Limits on BFs (away from resonances for multibody)

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II ($300{ m fb}^{-1}$)
$D^0 ightarrow \mu^+ \mu^-$	$4.2 imes 10^{-10}$	$1.3 imes10^{-10}$
$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\Lambda ightarrow p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Statistical precision on A_{CP} (PS integrated)

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	1%	0.4%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

Prospects for radiative decays at Belle II [arXiv:1808.10567]

	Test luminosites	$(D^0 \rightarrow 0^{-1})$
	Int. luminosity	$A_{CP}(D^0 \to \rho^0 \gamma)$
Belle result	$1 {\rm ~ab^{-1}}$	$+0.056 \pm 0.152 \pm 0.006$
	5 ab^{-1}	± 0.07
Belle II statistical error	$15 {\rm ~ab^{-1}}$	± 0.04
	$50 {\rm ~ab^{-1}}$	± 0.02
		$A_{CP}(D^0 \to \phi \gamma)$
Belle result	1 ab^{-1}	$-0.094 \pm 0.066 \pm 0.001$
	5 ab^{-1}	± 0.03
Belle II statistical error	15 ab^{-1}	± 0.02
	50 ab^{-1}	± 0.01
		$A_{CP}(D^0 \to \overline{K}^{*0}\gamma)$
Belle result	1 ab^{-1}	$-0.003 \pm 0.020 \pm 0.000$
	5 ab^{-1}	± 0.01
Belle II statistical error	$15 {\rm ~ab^{-1}}$	± 0.005
	$50 {\rm ~ab^{-1}}$	± 0.003

Some thoughts on systematics

- Muonic channels at LHCb should be statistically limited (proved by current analyses with hardonic channels)
- Same is true for radiative decays at Bellell
- Electron modes may see some competition between Bellell and LHCb (mass resolution vs cross section)
- Radiative decays should be possible at LHCb as well, although the neutral energy reco makes bkg rejection non-trivial

Conclusions

- Steady progress over the years, all modes one can think of should be covered in the near future
- Signal already seen on multibody dimuonic decays, first asymmetry measurements! Move to angular/amplitude analyses
- Modes with dielectron well hopefully follow soon
- The future of rare charm decays at LHCb Upgrade and Bellell looks promising!