Latest results on EW penguin modes from LHCb and future prospects

Konstantinos A. Petridis on behalf of the LHCb collaboration
University of Bristol

April 3, 2019

Probing New Physics with EW penguins

Look at observables that:
1 Have a small SM contribution
2 Can be measured to high precision
3 Can be predicted to high precision
\rightarrow Flavour Changing Neutral Currents in SM

- Loop level
- GIM suppressed
- Left-handed chirality
$\Delta F=1$ Rare B decays

\rightarrow NP could violate any of these

An intriguing set of results

1. Tests of Lepton Flavour Universality in decay rates of $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$ \rightarrow Cancellations of hadronic uncertainties in predictions
2. Measurements of decay rates of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$ \rightarrow Large theory uncertainties.
3. Angular analyses of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$
\rightarrow Can access observables with reduced dependence on theory uncertainties

- Ratios of form: $\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}=1.0$ in SM with $\mathcal{O}\left(10^{-4}\right)$ error [JHEP07(2007)040]
- Up to $\mathcal{O}(1 \%)$ corrections due to QED corrections [EPJC76(2016)8,440] \rightarrow Any statistically significant deviation is smoking gun for New Physics
\rightarrow Measure: $R_{K^{(*)}}=\frac{\int \frac{d \mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{d q^{2}} d q^{2}}{\int \frac{d \mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}{d q^{2}} d q^{2}}$

Run1: R_{K} : Central- $q^{2}: 2.6 \sigma$ from SM
Run1: $R_{K^{*}}$: Low- $q^{2}: 2.1-2.3 \sigma$ from SM, Central- $q^{2}: 2.4-2.5 \sigma$ from SM

NEW: Update of R_{K} in $1.1<q^{2}<6.0 \mathrm{GeV} / c^{2}$

[LHCb arXiv:1903.09252]

- Completely re-optimised 2011 and 2012 data and re-designed analysis strategy
- Added 2015 and 2016 collected during LHCb's Run2
\rightarrow Double the sample size compared to previous analysis

Details of measurement

- Performance of electron and muon final states differs in LHCb
\triangleright Electrons emit more bremsstrahlung through interactions with LHCb detector
\rightarrow Worse mass and q^{2} resolution
\rightarrow Lower reconstruction efficiency
- Measure R_{K} in using a double-ratio involving rare- and resonant- modes

$$
\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right.} / \frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(e^{+} e^{-}\right)\right.}
$$

\rightarrow Cancel out most systematic uncertainties

NEW: R_{K} key ingredients

$R_{K}=\frac{N\left(K^{+} \mu^{+} \mu^{-}\right)}{N\left(K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)} \times \frac{N\left(K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}{N\left(K^{+} e^{+} e^{-}\right)} \times \frac{\varepsilon\left(K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)}{\varepsilon\left(K^{+} \mu^{+} \mu^{-}\right)} \times \frac{\varepsilon\left(K^{+} e^{+} e^{-}\right)}{\varepsilon\left(K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}$
\rightarrow Key to control ratios of efficiencies and of yields
rare, J / ψ

Efficiency ratios from simulation calibrated using data control channels

- Calibrate: B^{+}kinematics, Tracking, Particle ID, Trigger, Resolution
- Associated systematic uncertainty $<1 \%$
- Check efficiencies are correct using:
$r_{J / \psi}=\frac{\mathcal{B}\left(B^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(B^{+} J / \psi\left(e^{+} e^{-}\right)\right)}=1.0$
Measure: $r_{J / \psi}=1.014 \pm 0.035$ (stat. + syst)
- Differential $r_{J / \psi}$ demonstrates efficiencies are understood in all points of phase-space

[LHCb arXiv:1903.09252]

NEW: R_{K} mass fits

- A single fit to the $m\left(K^{+} \ell^{+} \ell^{-}\right)$distributions of rare and J / ψ mode is performed to obtain R_{K}
[LHCb arXiv:1903.09252]

$$
N_{K e e}=760, N_{K \mu \mu}=1940 \text { in } 1.1<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}
$$

- Partially reconstructed backround shape in $B^{+} \rightarrow K^{+} e^{+} e^{-}$taken from simulated $B^{0} \rightarrow K^{* 0} e^{+} e^{-}$, assosciated systematic 1%

Run1 and 2015, 2016 data: $\mathbf{R}_{\mathbf{K}}=\mathbf{0 . 8 4 6} \mathbf{- 0 . 0 5 4}_{+\mathbf{0} .060}^{(\text {stat. }}$) ${ }_{-\mathbf{0 . 0 1 4}}^{+\mathbf{0 . 0 1 6}}$ (syst.) [LHCb arXiv:1903.09252]
Previous Run1 measurement: $R_{K}=0.745_{-0.074}^{+0.090} \pm 0.036$
[LHCb PRL113(2014)151601]

- New measurement $\sim 2.5 \sigma$ from SM

Dominant systematic uncertainties:
Fit shape, calibration of trigger and B^{+}kinematics
\rightarrow Full Run2 analysis ongoing (doubles number of B 's) will help clarify things
\rightarrow Angular $b \rightarrow s \ell^{+} \ell^{-}$analyses with Run2 data underway

If fit Run1 and 2015,2016 data were fit separately (accounting for correlations):

- Previous Run1 results vs. this Run1 result: $<1 \sigma$
- Run1 results vs. Run2 result: 1.9σ
$\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$:
- Compatible with previous result [LHCb JHEP06(2014)133] at $<1 \sigma$
- Run1 and Run2 results compatible at $<1 \sigma$

Run1 and 2015, 2016 data: $\mathbf{R}_{\mathbf{K}}=\mathbf{0 . 8 4 6}_{-0.054}^{+0.060}$ (stat. $)_{-0.014}^{+0.016}$ (syst.)
[LHCb arXiv:1903.09252]
Previous Run1 measurement: $R_{K}=0.745_{-0.074}^{+0.090} \pm 0.036$ [LHCb PRL113(2014)151601]
[LHCb arXiv:1903.09252]

- New measurement $\sim 2.5 \sigma$ from SM

Dominant systematic uncertainties:
Fit shape, calibration of trigger and B^{+}kinematics
\rightarrow Full Run2 analysis ongoing (doubles number of B's) will help clarify things
\rightarrow Angular $b \rightarrow s \ell^{+} \ell^{-}$analyses with Run2 data underway

Run1 and 2015, 2016 data: [LHCb arXiv:1903.09252]
$\left.\frac{d \mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{d q^{2}}\right|_{1.1<q^{2}<6.0}=\left(28.6_{-1.7}^{+2.0} \pm 1.4\right) \times 10^{-9} \mathrm{GeV}^{2} / c^{-4}$
using $\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$from [LHCb JHEP06(2014)133]

2. Differential branching fractions

$>$ Measurements of $d \mathcal{B} / d q^{2}$ of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$
Experiment: [JHEP06(2014)133], [JHEP09(2015)179], [JHEP06(2015)115], [JHEP06(2015)115]

Theory: Bobeth et al [JHEP07(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD93,074501(2016)], Horgan et al [PRD89(2014)]
\rightarrow Measurements below SM prediction (2-3 -3 depending on final state)

2. Differential branching fractions

- Measurements of $d \mathcal{B} / d q^{2}$ of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$

Uncertainty of Run1 $\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$and $\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$measurements dominated by knowledge of $\mathcal{B}\left(B \rightarrow J / \psi K^{(*)}\right)$ from B-factories.

- Updated measurements from Belle2 crucial
- Can still measure q^{2} spectrum with high precision
- Asymmetries and ratios between $b \rightarrow s$ and $b \rightarrow d$ processes test MFV and will be dominated by stat. uncertainties for a while still

Theory: Bobeth et al [JHEPO7(2011)067], Bharucha et al [JHEP08(2016)098], Detmold et al [PRD93,074501(2016)], Horgan et al [PRD89(2014)]

- Measurements below SM prediction (2-3 σ depending on final state)

Measurements of $b \rightarrow d \mu^{+} \mu^{-}$decays

credit: Tom Blake

- Run1 and 2015,2016 data have provided observations of numerous $b \rightarrow d \mu^{+} \mu^{-}$ processes
- Evidence of $B_{s}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$opens up tests of MFV comparing angular observables with $B \rightarrow K^{* 0} \mu^{+} \mu^{-}$with LHCb upgradell

\triangleright Precision commensurate to Run1

$$
\left.B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)
$$

$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$
$-\ln \mathrm{SM} \frac{\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)} \sim\left|\frac{V_{t d}}{V_{t s}} \frac{f_{B \rightarrow \pi}}{f_{B \rightarrow K}}\right|^{2}$

LHCb [JHEP10(2015)034]
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$LHCb [JHEP10(2015)034]

- $b \rightarrow d \ell^{+} \ell^{-}$statistically limited even with LHCb Upgrade II data
- Expect 10 -fold improvement in experimental error
- Modest improvements in Lattice predictions also required to maximise gain

Branching fractions of $B \rightarrow \ell^{+} \ell^{-}$

- Branching fraction measurement provides stringent constraints on axial-vector and (pseudo-)scalar couplings

Left: $B \rightarrow \mu^{+} \mu^{-}$[PRL118(2017)191801], Right: $B_{s} \rightarrow \tau^{+} \tau^{-} \quad[P R L 118(2017) 251802]$

$\mathcal{B}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)<6.8 \times 10^{-3}$ at 95% CL World first $\mathcal{B}\left(B^{0} \rightarrow \tau^{+} \tau^{-}\right)<2.1 \times 10^{-3}$ at 95% CL World best
Full Run2 updates ongoing. LHCb Upgrade II needed to fully exploit (see Christoph's talk)

- Measure $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$to $\sim 5 \%$ (on par with current theory error)
- Given current anomalies, $B \rightarrow e^{+} e^{-}$and $B \rightarrow \tau^{+} \tau^{-}$can be used to exclude models with $300 \mathrm{fb}^{-1}$

3. $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$angular measurements

- Rich amplitude structure $\rightarrow 8$ CP-even and 8 CP-odd observables

 with SM
\rightarrow Anomalous vector-dilepton coupling
- Update of observables binned in q^{2} with Run1+Run2 data underway
- Plans to directly fit for WCs from angular and q^{2} distribution
[Hurth et al [JHEP11(2017)176], [Chrzaszcz et al 1805.06378], [Blake et al EPJC(2018)78:453]

$B^{0} \rightarrow K^{* 0} e^{+} e^{-}$angular analysis prospects

- With Run2, by 2018 data expect $B^{0} \rightarrow K^{* 0} e^{+} e^{-}$yield:
$\triangleright \sim 400$ in $0.045<q^{2}<1.1 \mathrm{GeV}^{2}$
$\triangleright \sim 500$ in $1.1<q^{2}<6 \mathrm{GeV}^{2}$
\triangleright Similar to $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$with Run1 data in same bin
\rightarrow Measurements of multiple angular observables possible through multi-dimensional ML fits
\rightarrow Different experimental effects compared to $R_{K}^{(*)}$
\triangleright Larger backgrounds than muon case will require good understanding of their angular distribution
\triangleright More robust methods also being investigated by fitting a folded angular distribution

$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$angular analysis

$$
\frac{d^{5} \Gamma}{d \vec{\Omega}}=\frac{3}{32 \pi} \sum_{i}^{34} K_{i} f_{i}(\vec{\Omega})
$$

[LHCb JHEP09(2018)146]

Combine subset of K_{i} to form:

$$
\begin{aligned}
& A_{\mathrm{FB}}^{\ell}=-0.39 \pm 0.04 \text { (stat) } \pm 0.01 \text { (syst) } \\
& A_{\mathrm{FB}}^{h}=-0.30 \pm 0.05 \text { (stat) } \pm 0.02 \text { (syst) } \\
& A_{\mathrm{FB}}^{\ell h}=0.25 \pm 0.04 \text { (stat) } \pm 0.01 \text { (syst) }
\end{aligned}
$$

- $K_{11}-K_{34}$ compatible with zero
- $K_{6} \sim 2.6 \sigma$ from SM

Charming interlude I

- Anomalies in $b \rightarrow s \mu^{+} \mu^{-}$have shed doubt on control of theory uncertainties, related to the "charm-loop"

- Extract both short- and long-distance contribution from data through angular and q^{2} spectrum
[Lyon et al 1406.0566], [Bobeth et al EPJC(2018)786:451], [Blake et al EPJC(2018)78:453]

Left: LCSR+analyticity [Chrzaszcz et al 1805.06378], Right: Breit-Wigners [Blake et al EPJC(2018)78:453]

Expected post-fit precision on P_{5}^{\prime} with full Run2 data

Charming interlude II

- Look at effect of interference between short- and long-distance $B \rightarrow K^{*} \mu^{+} \mu^{-}$ amplitudes on CP-odd observables A_{i}
- Knowledge of strong-phase variation offers sensitivity to NP weak phases in the vector amplitude of $b \rightarrow s \ell \ell$ decays

[Blake et al EPJC(2018)78:453]
$B \rightarrow K^{(*)}$ form factors
- Global fits of Wilson coefficients to Rare-B decay data rely on precise predictions $B \rightarrow K^{(*)}$ form factors
- Great advancements by theory and Lattice QCD community Khodjamirian et al [1703.04765], Bharucha et al [1503.05534], Horgan et al [1310.3722], Meinel et al [1608.08110], Buchard et al [1509.06235,1507.01618]...
- Expect further improvements in theory predictions coming through further developments in Lattice QCD or otherwise
[LHCb Run1 Eur. Phys.J. C(2017)77:161]

- Can also use our data to further cross-check/improve on precision [Eur. Phys.J. C(2017)77:161]

Summary

- Run1 and Run2 of LHCb have ushered precision era in $b \rightarrow s \ell \ell$ transitions revealing intriguing tensions
- Update to R_{K} using data between 2011-2016 results in $\sim 2.5 \sigma$ tension to SM
\triangleright More measurements needed to clarify situation
- Working on adding 2017,2018 data doubling the number of B's
- R_{K}^{*} and angular analyses of $B \rightarrow K^{*} \ell^{+} \ell^{-}$within Run2 on their way \rightarrow Clarify situation
- Full exploitation of these decays can only be achieved through LHCb Upgrade II (see Christoph's talk)

Backup

$B^{0} \rightarrow K^{* 0} e^{+} e^{-}$angular analysis LHcb [JHEPPO4(2015)(064]

- Measure angular observables in $0.0004<q^{2}<1 \mathrm{GeV}^{2}$
\rightarrow dominated by C_{7}^{\prime} contributions
- ~ 150 signal candidates \rightarrow Fit in $\cos \theta_{\ell}, \cos \theta_{K}$ and "folded" ϕ to measure $A_{T 2}, A_{T}^{l m}, A_{T}^{R e}, F_{L}$

- Measurements complementary to BFs and $A_{C P}(t)$ of $B \rightarrow K^{*} \gamma$ and $B_{s} \rightarrow \phi \gamma$
- Provide one of strongest constraints to C_{7}^{\prime}

If instead the Run 1 and Run 2 were fitted separately:

$$
\begin{array}{ll}
R_{K \text { Run 1 }}^{\text {new }}=0.717_{-0.071-0.016}^{+0.083+0.017}, & R_{K \text { Run } 2}=0.928_{-0.076-0.017}^{+0.089+0.020} \\
R_{K \text { Run 1 }}^{\text {old }}=0.745_{-0.074}^{+0.090} \pm 0.036 & (\underline{\text { PRL113(2014)151601 })}
\end{array}
$$

Compatibility taking correlations into account:

- Previous Run 1 result vs. this Run 1 result (new reconstruction selection): $<1 \sigma$;
- Run 1 result vs. Run 2 result: 1.9σ.
$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$branching fraction:
- Compatible with previous result (JHEP06(2014)133) at $<1 \sigma$;
- Run 1 and Run 2 results compatible at $<1 \sigma$.
$B^{+} \rightarrow K^{+} e^{+} e^{-}$branching fraction:

$$
\frac{\mathrm{d} \mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{\mathrm{d} q^{2}}\left(1.1<q^{2}<6.0 \mathrm{GeV}^{2}\right)=\left(28.6_{-1.7}^{+2.0} \pm 1.4\right) \times 10^{-9} \mathrm{GeV}^{-2}
$$

$$
R_{K}^{\psi(2 S)}=0.986 \pm 0.013
$$

Thibaud Humair

Thibaud Humair

- After calibration, very good data/MC agreement in all key observables

Rare decays at LHCb Phasell

2018-2021	Run 3 (2021-2023)	2023-2025	Run $4(2025-2028)$	2028-2030	Run 5 (2030-2035+)				
Shutdown	$\sim 2 \mathrm{fb}^{-1}$	Shutdown	$\sim 50 \mathrm{fb}^{-1}$	Shutdown	$\sim 300 \mathrm{fb}^{-1}$				
LHCb upgrade Phasel									LHCb upgrade Phasell

- Angular and LFU measurements statistically limited even after Phasel
\triangleright Dominant systematic uncertainties statistical in nature

LHCb Upgrade II Scenario I	$\boldsymbol{\sim}$ $R_{K}{ }^{\prime}[1,6]$ $\boldsymbol{\sim}$ $R_{K} \cdot[1,6]$ $\boldsymbol{\sim}$ $R_{\phi}[1,6]$	
LHCb Upgrade II Scenario II	$\underset{-}{-}$	
LHCb Upgrade II Scenario III		
LHCb Upgrade II Scenario IV	\cdots	\cdots
LHCb Run 1		
0.40 .6	0.8	$\begin{array}{ll} 1.2 \\ & R_{X} \end{array}$

- Maintain/improve performance through: material reduction, higher segmentation ECAL, timing information
- Measure $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$to $\sim 5 \%$ (on par with current theory error) \triangleright NP effects in $B \rightarrow e^{+} e^{-}$and $B \rightarrow \tau^{+} \tau^{-}$means with $300 \mathrm{fb}^{-1}$ can

