Prospects for rare decays at ATLAS and CMS

Hadrian's wall Sycamore Gap tree TUPFP participants

> Towards the Ultimate Precision in Flavour Physics Durham, UK – April 4th, 2019

B physics in ATLAS & CMS

CMS

101.11

-

• "Measurement of the B0s $\mu+\mu-$ Branching Fraction and Search for $B^0 \rightarrow \mu+\mu-$ with the CMS experiment", Nature 522 (2015) 68

• "Angular analysis of the decay $B^+ \rightarrow K^+ \mu^+ \mu^-$ in proton-proton collisions at \sqrt{s} = 8 TeV", A_{FB} , F_H : PRD 98 (2018) 112011

 "Measurement of angular parameters from the decay B⁰ → K⁰* μ⁺μ⁻ in proton-proton collisions at √s= 8 TeV", P₁,P₅': Phys. Lett. B 781 (2018) 517, A_{FB}, F_L and BF: Phys. Lett. B 753, 424 (2016)
 ATLAS

• "Angular analysis of the decay $B^0 \rightarrow K^*\mu^+\mu^-$ ", JHEP10 (2018) 047

 "Study of the rare decays of B⁰_s and B⁰ into muon pairs from data collected during the LHC Run 1 with the ATLAS detector", EPJC 76 (2016) 513

 "Study of the rare decays of B⁰_s and B⁰ into muon pairs from data collected during 2015 and 2016 with the ATLAS detector", arXiv: 1812.03017, accepted by JHEP

B physics in ATLAS and CMS

Prospects:

"Opportunities in Flavour Physics at the HL-LHC and HE-LHC" arXiv:1812.07638

• **CMS**: "Study of the expected sensitivity to the P_5 ' parameter in the $B^0 \rightarrow K^{0*}\mu^+\mu^-$ decay at the HL-LHC", **CMS-PAS-FTR-18-033**, 2018. http://cds.cern.ch/record/2651298.

- **CMS**: "Measurement of rare $B \rightarrow \mu^+\mu^-$ decays with the Phase-2 upgraded CMS detector at the HL-LHC", CMS-PAS-FTR-18-013, 2018, http://cdsweb.cern.ch/record/2650545.
 - ATLAS: " $B_d^0 \rightarrow K^{0*}\mu\mu$ angular analysis prospects with the upgraded ATLAS detector at the HL-LHC", ATL-PHYS-PUB-2019-003, 2019, https://cds.cern.ch/record/2654519.
 - **ATLAS**: "Prospects for the $B(B_{(s)} \rightarrow \mu^+\mu^-)$ measurements with the ATLAS detector in the Run 2 and HL-LHC data campaigns", ATL-PHYS-PUB-2018-005, 2018. https://cds.cern.ch/record/2317211.

14.0

rare B decays $B_{(s)} \rightarrow \mu^+ \mu^-$

Joir:

15.00

Sale

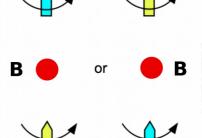
in the

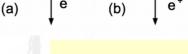
-

ومنجزة

305

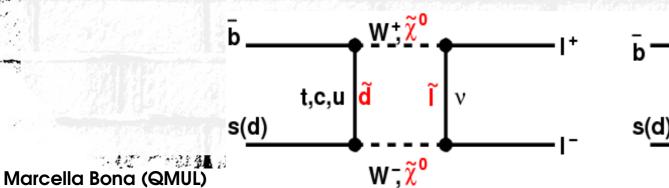
ATLAS: EPJ C76 (2016) 513, arXiv:1604.04263 arXiv:1812.03017, accepted by JHEP CMS Nature (2015) 14474, arXiv:1411.4413


Motivations and predictions


Jet.

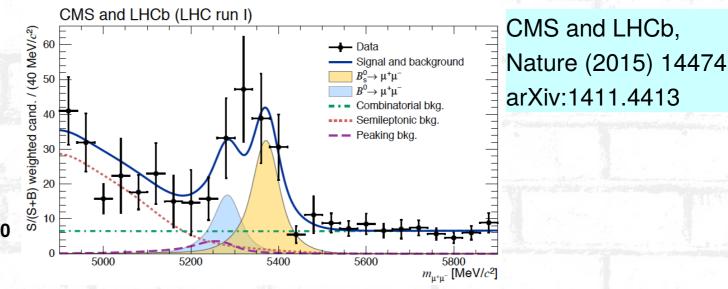
-

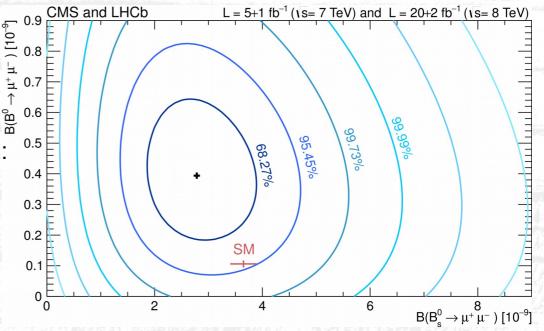
-

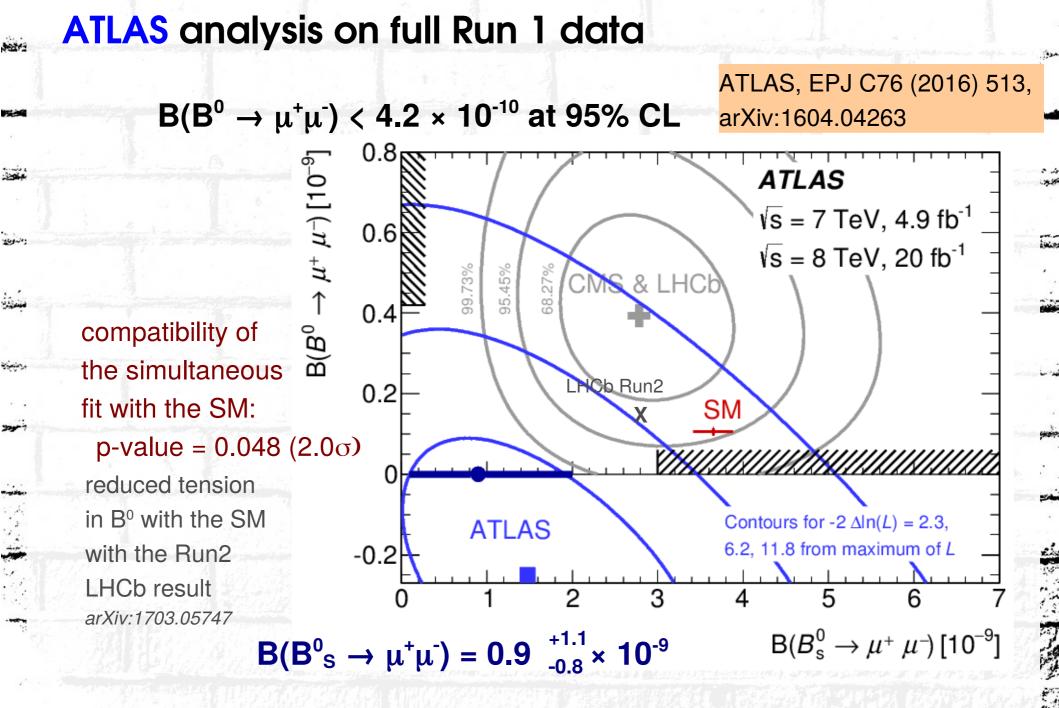

- Decays of B⁰ and B⁰_s into two leptons have to proceed through Flavour Changing Neutral Currents (FCNC)
 → forbidden at tree level in the SM
- In addition, they are CKM and helicity suppressed.
- Within the SM, they can be calculated with small theoretical uncertainties of order 6-8%

Bobeth et al.,
PRL 112 (2104)
101801
[includes NLO
EM and NNLO
QCD corrections

- $\begin{array}{c|cccc} {\rm meson} & {\rm Lepton \ type} \\ \hline {\rm type} & e & \mu & \tau \\ \hline B^0 & (2.48\pm 0.21)10^{-15} & (1.06\pm 0.09)10^{-10} & (2.22\pm 0.19)10^{-8} \\ B^0_s & (8.54\pm 0.55)10^{-14} & (3.65\pm 0.23)10^{-9} & (7.73\pm 0.49)10^{-7} \end{array}$
- Perfect ground for indirect new physics searches:
 - virtual new particles can contribute to the loop
 - both enhancement and suppression effects are possible


CMS analysis on full Run 1 data (with LHCb)


- Simultaneous 20 bin CMS+LHCb fit 6.2σ (7.4σ exp.)
- $B(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$
 - B(B⁰_S → $\mu^+\mu^-$) = 3.0^{+1.0}_{-0.9} × 10⁻⁹


3.2σ (0.8σ exp.)

2016+2017 CMS analysis in preparation:

- Dedicated triggers
- New pixel detector -> better tracking
- Improved MVA-based muon-ID
- Combined BF and lifetime analysis
- Expect.: 433 B_s / 54 B_d cand.
 - @ end Run 2 (assuming 300 fb -1)

ATLAS analysis on 2015-2016 Run 2 data

ATLAS arXiv:1812.03017

36.2/fb dataset of 2015-2016 data taking:

• effectively 26.3/fb for $B \rightarrow \mu \mu$

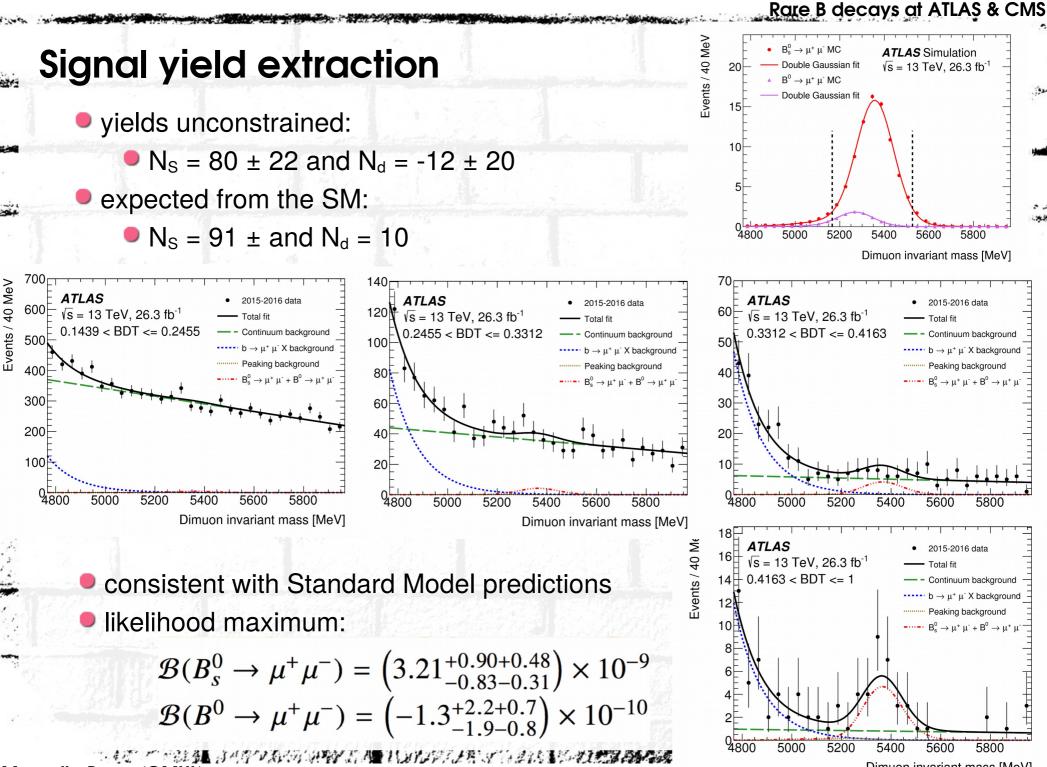
• 15.1/fb for B \rightarrow J/ $\psi\Phi$ and B \rightarrow J/ ψK

Trigger: higher thresholds [4-6 GeV] than in Run1,

Lxy > 0 request at trigger level

in the second

1

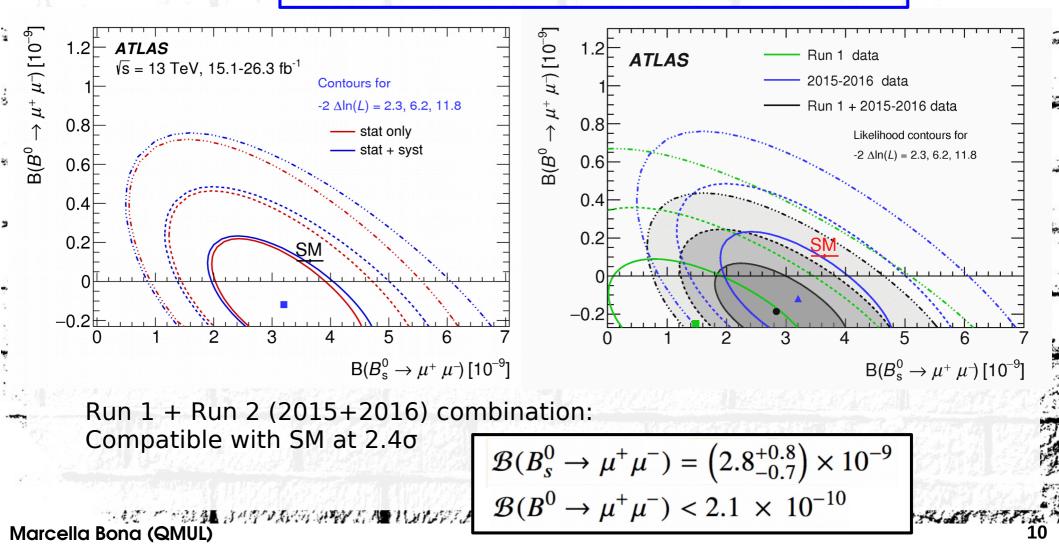

$$\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-) = rac{N_{d(s)}}{arepsilon_{\mu^+ \mu^-}} imes rac{arepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} imes rac{f_u}{f_{d(s)}}$$

$$imes ig[{\cal B}(B^+ o J/\psi K^+) imes {\cal B}(J/\psi o \mu^+ \mu^-) ig]$$

correction for the different hadronisation probabilities for B⁰_S and B⁰ vs B[±]

- include the B[±] and J/ ψ branching fractions
- correction for the efficiencies of the two channels
- normalisation yield and efficiency ratio define the factor:

$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$



Dimuon invariant mass [MeV]

Combination of Run 1 and Run 2 results at ATLAS

Neyman Contours yield for Run 2:

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9} = \left(3.2^{+1.1}_{-1.0}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 4.3 \times 10^{-10} @ 95\% \text{ CL} \end{aligned}$$

Angular analysis on $B \rightarrow K^* \mu \mu$

ATLAS

Jair

-

in the

-

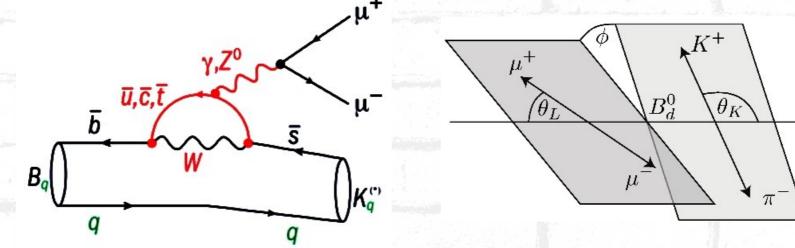
ومنبعيك

JHEP 10 (2018) 047, arXiv:1805.04000

CMS

2011 data: Phys. Lett. B 727 (2013) 77 2012 data: Phys. Lett. B 753 (2016) 424 PLB 781 (2018) 517, arXiv:1710.02846

Angular analysis on B \rightarrow K^{*}µµ


-

-

in the second

another way to look at FCNC: b → s transition with a BR ~ 1.1 10⁻⁶
angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams

allows measuring a large set of angular parameters sensitive to Wilson coefficients C⁽⁺⁾₇, C⁽⁺⁾₉, C⁽⁺⁾₁₀, C⁽⁺⁾_{S.P}

→ decay described by three angles $(\theta_L, \theta_K, \phi)$ and the di-muon mass squared $q^2 \rightarrow$ the angular distribution is analysed in finite bins of q^2 as a function of θ_L , θ_K and ϕ . JHEP 02 (2016) 104

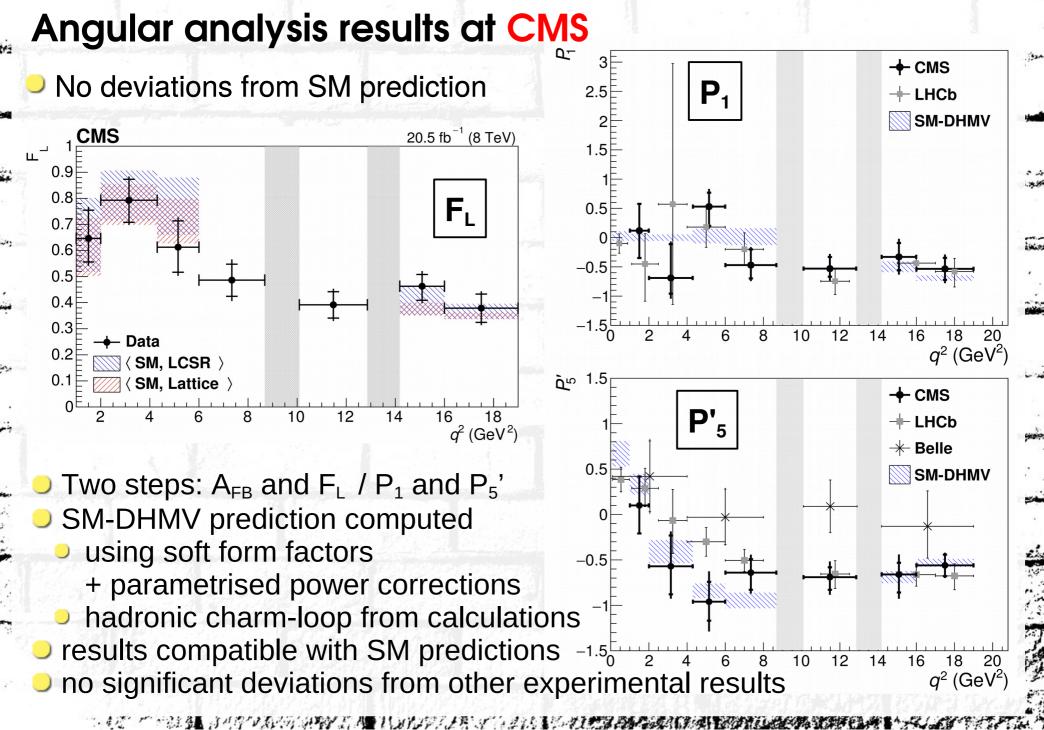
 \rightarrow LHCb reports a 3.4 σ deviation from the SM.

JHEP 02 (2016) 104 arXiv:1512.04442

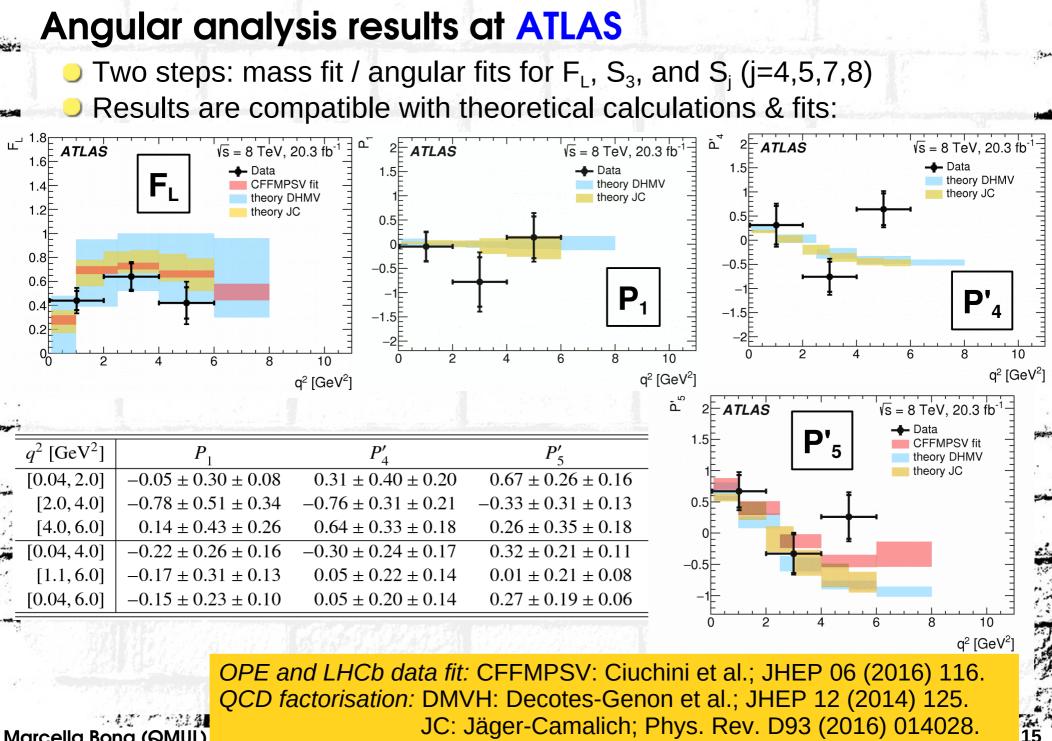
7

Angular analysis on $B \rightarrow K^* \mu \mu$

-

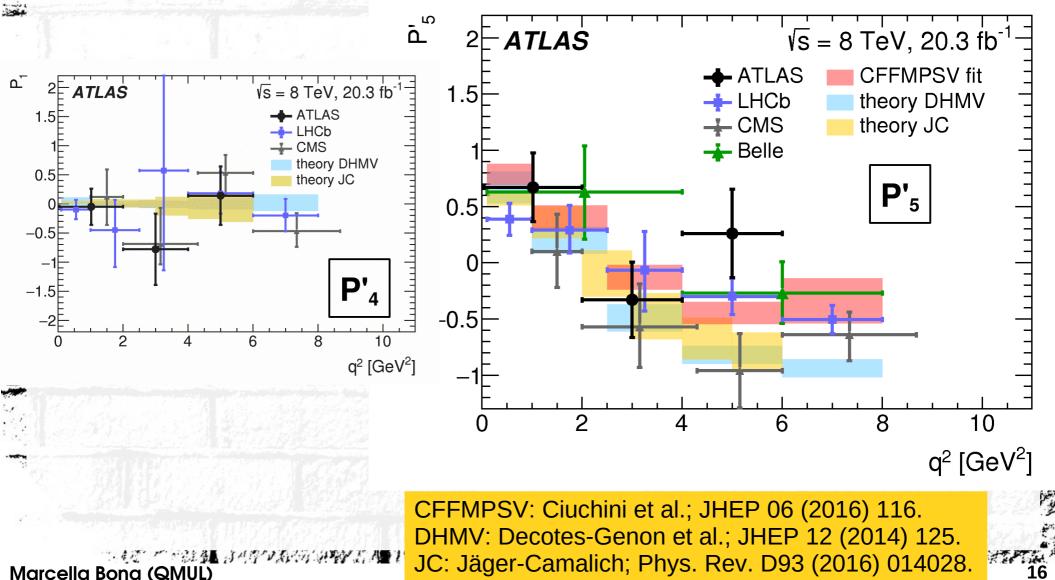

B⁰ flavour eigenstate can be identified through the K^{*} → K⁻ π⁺ decay
 angular distribution given by:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell}{-F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi} + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell} + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi} + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right].$$


the S parameters are translated into the P⁽⁾ parameters via

$$P_1 = \frac{2S_3}{1 - F_L} \qquad P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

- the P⁽⁾ parameters are expected to have a reduced dependence on the hadronic form factors.
- ATLAS and CMS need to fold the angular distribution via trigonometric relations to reduce the number of free parameters



Marcella Bona (QMUL)

Angular analysis results at ATLAS and CMS

 \rightarrow ATLAS gets deviations of about 2.5 σ (2.7 σ) from DHMV in $P'_4(P'_5)$ in [4,6] GeV²

「注意」は代替なな代表の目的である。 Marcella Bona (QMUL)

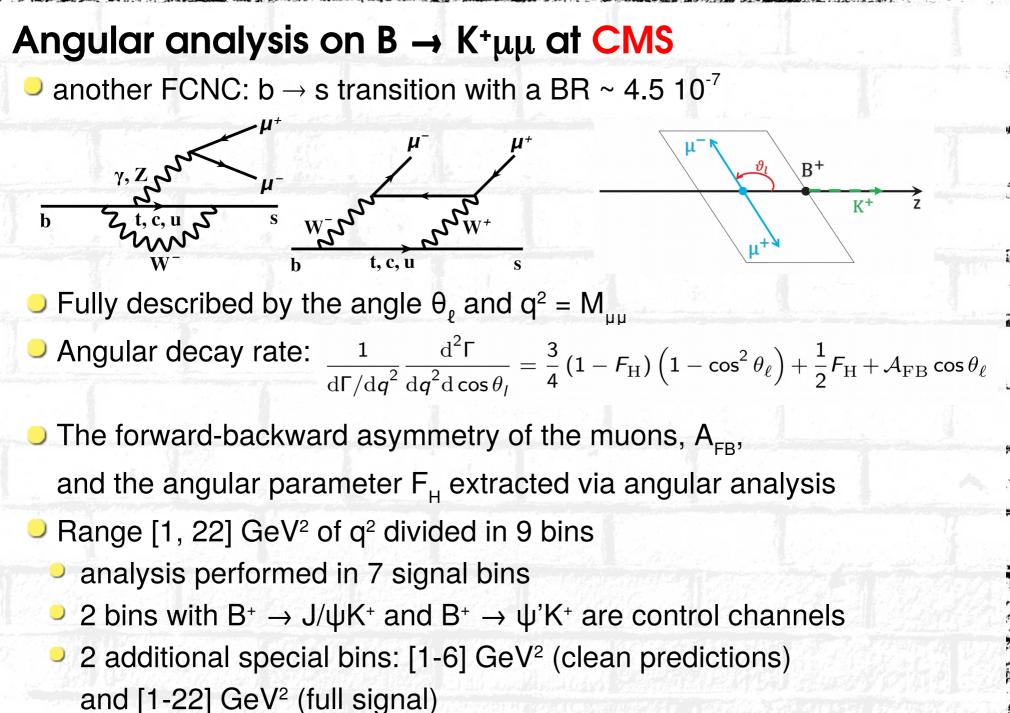
in a

Angular analysis on $B \rightarrow K^+\mu\mu$

CMS

Jak

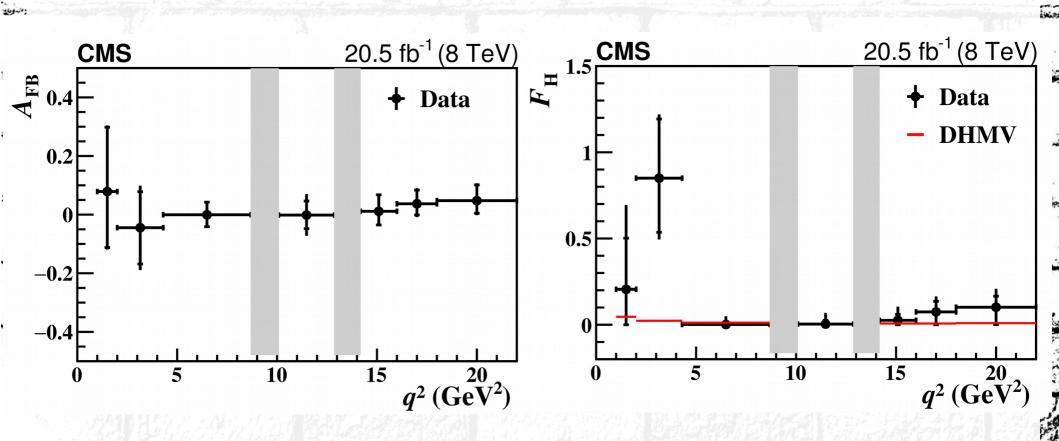
15.00


-

in the

-

ومنجزة


arXiv:1806.00636, PRD 98 (2018) 112011

1

Angular analysis on B \rightarrow K⁺µµ at CMS

- Inner error bar is statistical uncertainty
- Full bar is total uncertainty
- Results compatible with SM predictions within uncertainties

14.0

うり

Prospects for ATLAS & CMS

HL-LHC: arXiv:1812.07638 ATLAS: ATL-PHYS-PUB-2018-005 ATL-PHYS-PUB-2019-003 CMS: CMS-PAS-FTR-18-013 CMS-PAS-FTR-18-033

Jak

15.00

-

in the

-

ومنجزة

300

Future Prospects for ATLAS and CMS

- ATLAS&CMS can be competitive on favourable final states
- Di-muon is the quintessence of low- p_T clean signature @LHC
- More statistics will allow to improve these results
- New triggers (e.g., tracking @L1) will allow to deal with 200 PU
- Detector limitation: experiments designed to do something else, namely cover 10-1000 GeV range
 - going below 10 GeV (e.g., with electrons and muons) requires effort
- Limited trigger bandwidth (general purpose vs. dedicated experiments)
- Needed customisation (reconstruction, trigger, etc.) vs working force (<50 people)

Muons are the essential handle for flavour physics in ATLAS & CMS

- Electron reconstruction at ATLAS & CMS is about matching a track
- to >= 1 calorimeter deposit

Sale

-

-

diano,

3057

At low pT, the track might not even make it to the calorimeter and, in any case, deposits are very low energetic: difficult to disentangle them from noise, pileup, etc

Growing interest in flavour (thanks to LHCb anomalies) is helping

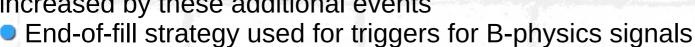
Still, there is much to do in view of HL-LHC

ATLAS Trigger Operation

output rate (all streams) output handwidth (all streams

pp data taken on 3–4 May, 2018, $\sqrt{s} = 13$ TeV


21.30


Time [hh:mm]

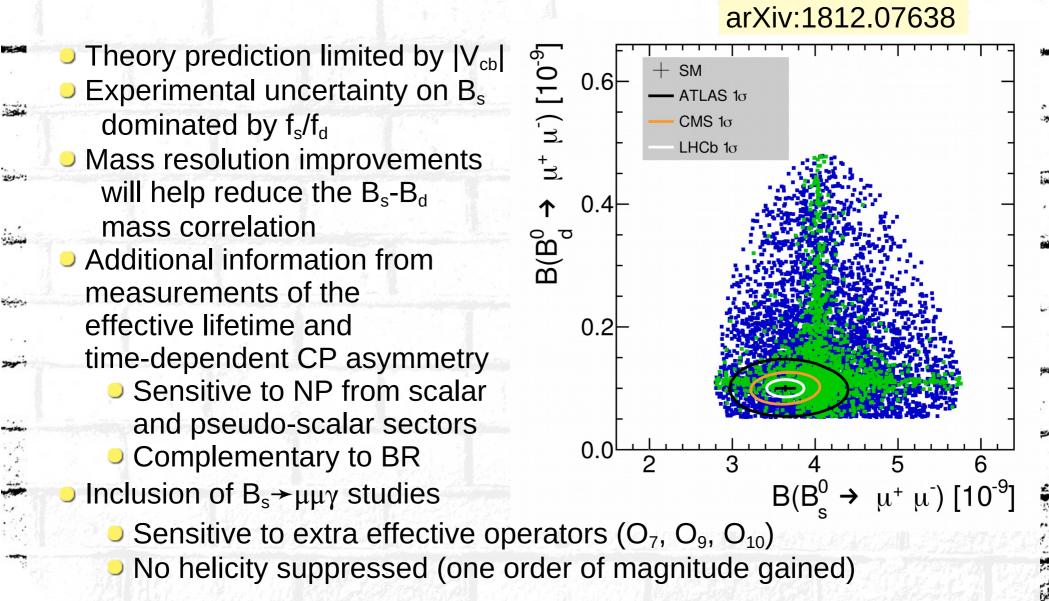
End of fill

Data taking in 2018 for ATLAS and CMS

ATLAS data taking in 2018

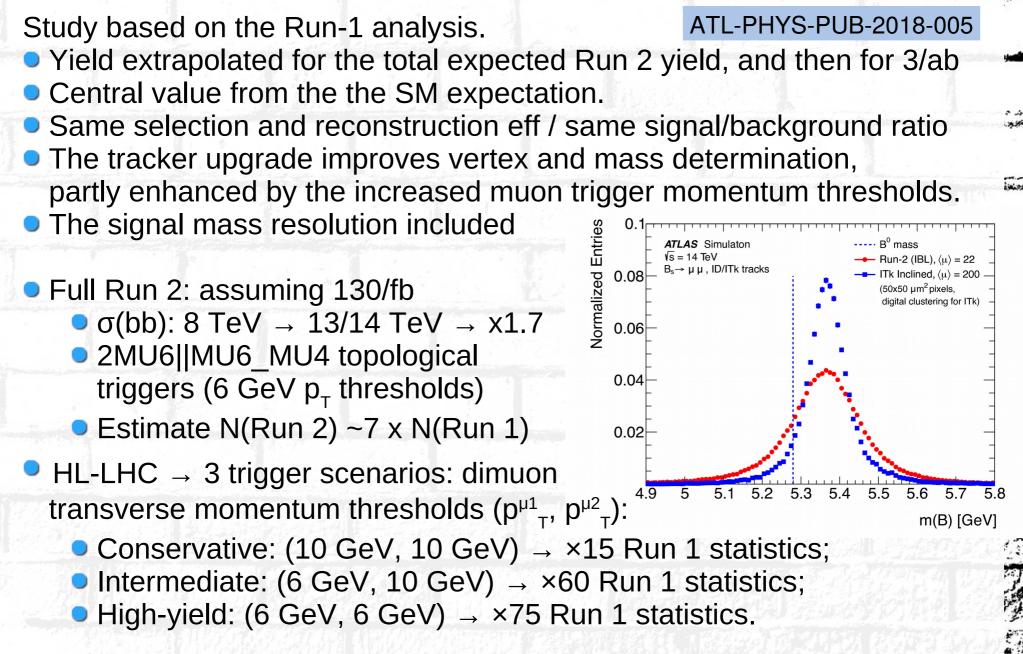
CMS data taking in 2018

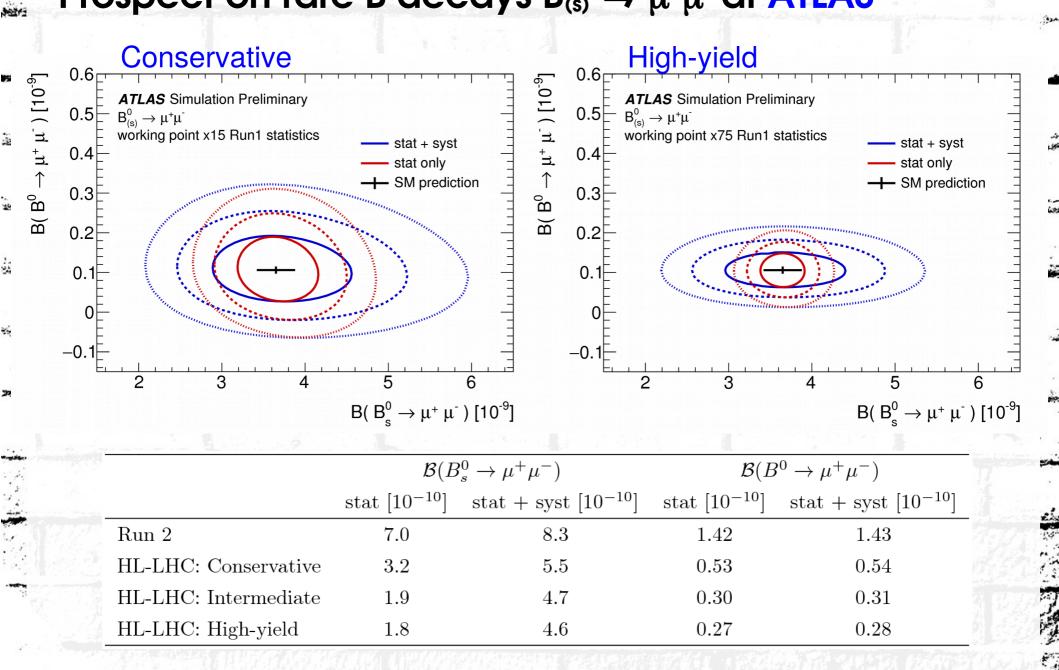
Smooth running since May: only minor updates to the trigger implemented


- L1 trigger rate \rightarrow 95 kHz at 2×10³⁴ cm⁻²s⁻¹
 - able to lower L1 thresholds for single Egamma, MET, di-tau to improve HLT turn-on curves
- HLT rate \rightarrow 1.8 kHz at 2×10³⁴ cm⁻²s⁻¹
 - averages 1.1 kHz over 12h fill
- "parking" an unbiased sample of B mesons
 - so far recorded over 9B events

19:30

だいがえまる。 げんりつ あんがいけぞう たいべき しんけんだい たたち ふていええた もういええた 読みを読み Marcella Bona (QMUL)


Prospects on $B_{(s)} \rightarrow \mu^+ \mu^-$ at HL-LHC


Prospects on $B_{(s)} \rightarrow \mu^+ \mu^-$ at HL-LHC at ATLAS

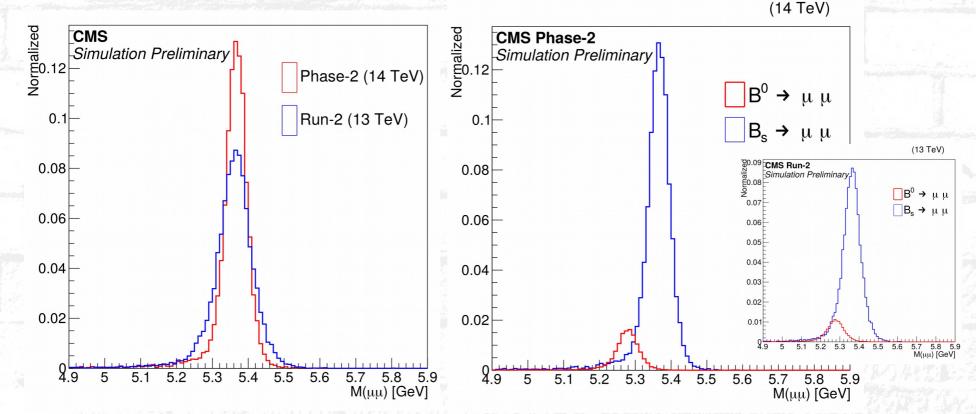
-

Sec.

Prospect on rare B decays $B_{(s)} \rightarrow \mu^+\mu^-$ at ATLAS

Prospect on rare B decays $B_{(s)} \rightarrow \mu^+\mu^-$ at CMS

CMS-PAS-FTR-18-013


26

- Phase 2 with improved tracker:
 - Study using Run-2 analysis strategy and same Run-2 trigger
 - BDT from Run-1 analysis

the states

-

- Improvement in the momentum resolution leads to about 40-50% gain in mass resolution for |η| < 1.4 (w.r.t. a Run-2 scenario)
- about 25 % improvement in mass peak separation

28

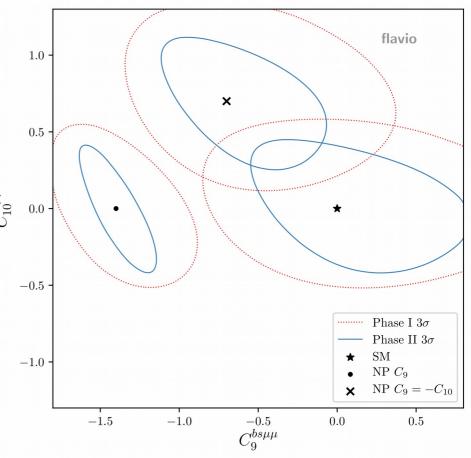
Prospects on B \rightarrow K^{*} $\mu^+\mu^-$ at HL-LHC

arXiv:1812.07638

• Large data set allows for precise determination of the angular observables in narrow bins of q^2 or using a q^2 -unbinned approach

~440k signal events in LHCb / ~700k events in CMS

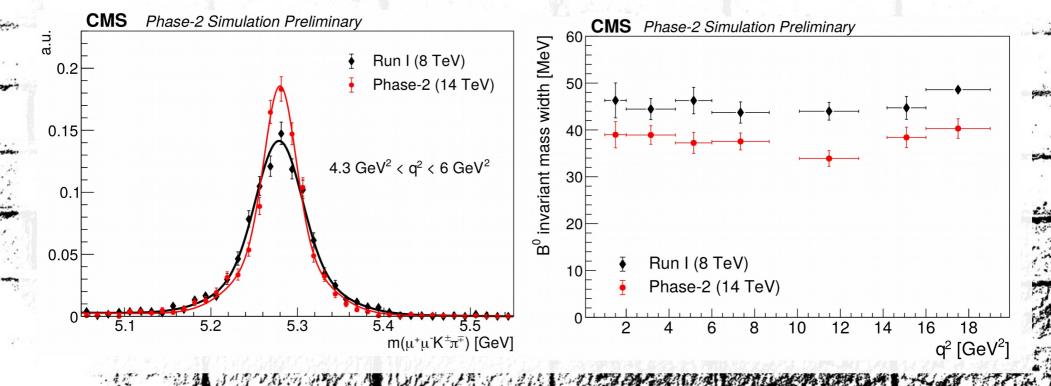
 Most systematic uncertainties expected to reduce significantly with luminosity due to larger control samples \rightarrow not systematically limited


 Combining many observables help discriminate NP scenarios.

-

نغورية المراجعة المراجعة (1993) المراجعة المراجعة (1993)

Sec.

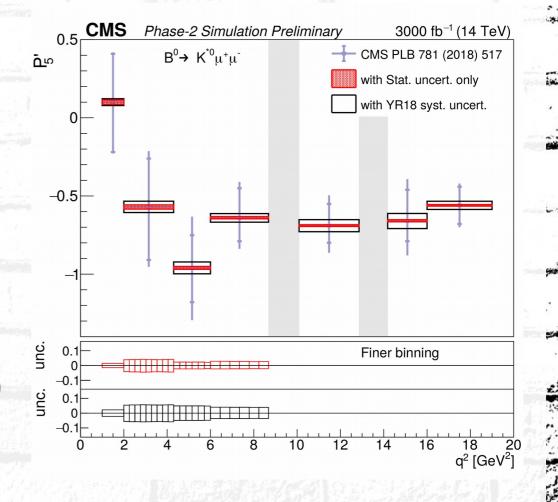

- Potential sensitivity to the SM and to NP scenarios motivated by LHCb anomalies,
- Scenarios are $C_9 = -1.4$ (vector current) and $C_9 = -C_{10} = -0.7$ (pure left-handed current).
- Included are the branching fraction of B_s → µ⁺µ⁻ and the angular observables of B⁰ → K^{0*}µ⁺µ⁻ in the low-q² region (e.g., P₅⁰).
- ATLAS and CMS combined after the HL-LHC phase. Expectations for ATLAS and CMS in Phase I from the CMS projection scaled by 1/√2

Prospects on B \rightarrow K^{*} $\mu^+\mu^-$ at HL-LHC at CMS

CMS-PAS-FTR-18-033

- Extrapolation from Run-1 results
 - No improvements in the analysis strategy (e.g., selection or fits)
- Same trigger thresholds and efficiency \rightarrow conservative
- Same signal-to-background, but mass resolution improvement included
- For each q² bin, expected yields obtained from simulated events generated for Phase-2, including an average of 200 pileup, and scaled to the luminosity of 3000/fb.

Marcella Bona (QMUL)


Prospects on B \rightarrow K^{*} $\mu^+\mu^-$ at HL-LHC at CMS

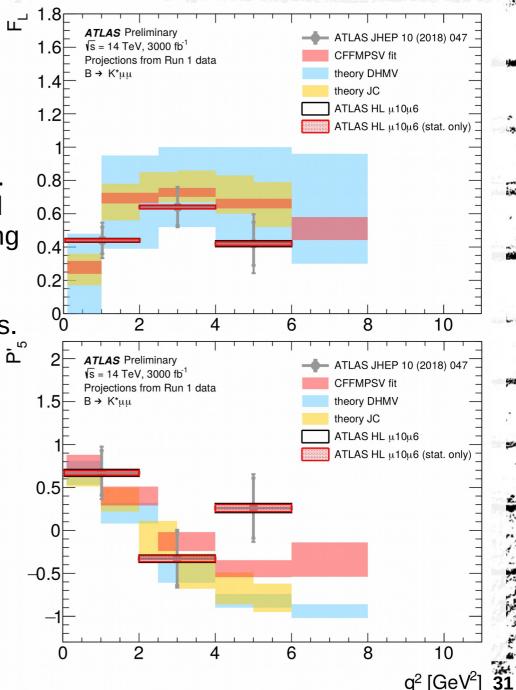
CMS-PAS-FTR-18-033

Statistical uncertainty on P₅⁰ at 3000/fb obtained by scaling Run 1 by the √ of the ratio of Run-1 yields over Phase-2 simulation.

فتعينه

 Most systematic uncertainties extrapolated from the Run-1 analysis with factor of 2 reduction (contamination from resonant decays, signal mass shape, CP mistagging rate, efficiency, angular resolution...)
 Other systematics scale with statistic of control samples

ATL-PHYS-PUB-2019-003


Prospects on B \rightarrow K^{*} $\mu^+\mu^-$ at HL-LHC at ATLAS

Based on the Run 1 analysis Scaled to 3000/fb of luminosity and ×1.7 b production cross-section. Same selection and reconstruction eff. Simulations include the 30% improved mass resolution from upgraded tracking Three di-muon trigger threshold scenarios: two 6 GeV muons, one 6 and one 10 GeV or two 10 GeV muons. Inclusion of S-wave contributions in the fit improves the systematic by x5 Detector alignment and B-field systematic uncertainties improved

by ~x4 with larger control samples and new techniques

-

1

ATL-PHYS-PUB-2019-003

ATLAS JHEP 10 (2018) 047 CFFMPSV fit theory DHMV theory JC ATLAS HL μ10μ6

ATLAS HL μ10μ6 (stat. only)

8

CFFMPSV fit theory DHMV theory JC

ATLAS HL µ10µ6

8

ATLAS JHEP 10 (2018) 047

ATLAS HL μ10μ6 (stat. only)

6

6

10

-

\$ 20

*

1000

-

120

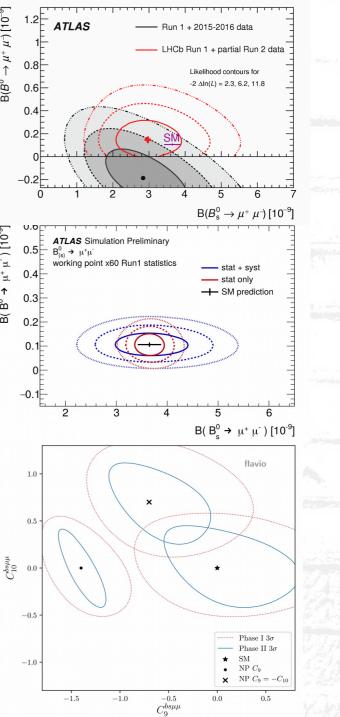
Prospects on B \rightarrow K^{*} $\mu^+\mu^-$ at HL-LHC at ATLAS

Joir -

Marcella Bona (QMUL)

	² [G W ²]	ctot	ctot	ctot	ctot	ctot	ctot	1.6	- $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$ Projections from Run 1 data
LHC phase	q^2 [GeV ²]	$\delta_{F_L}^{ m tot}$	$\delta_{P_1}^{ m tot}$	$\delta^{ m tot}_{P_4'}$	$\delta^{ m tot}_{P_5'}$	$\delta^{ m tot}_{P_6'}$	$\delta^{ m tot}_{P'_8}$	1.4	_ B → K [*] μμ
Run 1	[0.04, 2.0]	0.11	0.31	0.45	0.31	0.21	0.51	1.4	
	[2.0, 4.0]	0.12	0.61	0.37	0.34	0.34	0.57	1.2	-
	[4.0, 6.0]	0.18	0.50	0.38	0.39	0.30	0.43	E	
HL-LHC µ6µ6	[0.04, 2.0]	0.010	0.027	0.037	0.037	0.019	0.046	1 ⊨	
	[2.0, 4.0]	0.008	0.093	0.040	0.038	0.040	0.070	0.8	and the second se
	[4.0, 6.0]	0.016	0.083	0.032	0.047	0.033	0.041	0.0	and the second s
HL-LHC µ10µ6	[0.04, 2.0]	0.011	0.037	0.046	0.040	0.023	0.055	0.6	_
	[2.0, 4.0]	0.011	0.103	0.047	0.042	0.044	0.075	F	
	[4.0, 6.0]	0.018	0.100	0.040	0.053	0.038	0.052	0.4	-
HL-LHC μ10μ10	[0.04, 2.0]	0.018	0.065	0.076	0.059	0.041	0.093		
	[2.0, 4.0]	0.017	0.15	0.074	0.068	0.059	0.100	0.2	
		0.006	0 17	0 074	0.000	0.0(2	0 000		
Analysi		-					0.090 آمت س	00 ^E 2	$\frac{2}{\sqrt{5}} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$
Few ex system than sta	is not s ceptior atics is atistica	yste ns wl ~ x I pre	matio nere 1.6 l cisio	c dor at m arge n.	mina Iost t r	ted he	Ē	0 2 1.5	<u> </u>
 Few ex system than state The present than state 	is not s aception atics is atistica ecision ameter	yster ns wl 7 ~ x I pre in m is e>	mationere 1.6 l cisio easu (pec)	c dor at m arge n. uring ted t	nina Iost t r for e o imj	ted he exan	<u>م</u> ۱ple	Ē	ATLAS Preliminary I s = 14 TeV, 3000 fb ⁻¹ Projections from Run 1 data
 Few ex system than state The present than state 	is not s aception atics is atistica ecision ameter of ~ x9 pondin ios) rela	yster ns wl ~ x l pre in m is ex 9, ~ gly ir ative	mationere 1.6 l cisio easu (pec x8,	c dor at m arge n. uring ted t ~ x5 thre	nina lost t r for e o imp	ted he exam prove	م nple e by	1.5	ATLAS Preliminary I s = 14 TeV, 3000 fb ⁻¹ Projections from Run 1 data

q² [GeV²] 32


Conclusions

10 total

Sec.

- B physics in ATLAS and CMS is more challenging but still much alive and with promising perspectives
- The B anomalies are boosting a wider interest in flavour physics
- Ongoing studies on final states with electrons
- Various ways to counteract the low trigger efficiency
- Still quite limited (wo)manpower in general

inte

back-up slides

Joir -

15.00

-

augury .

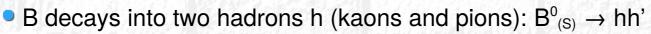
. بندور ا

برمنهجك

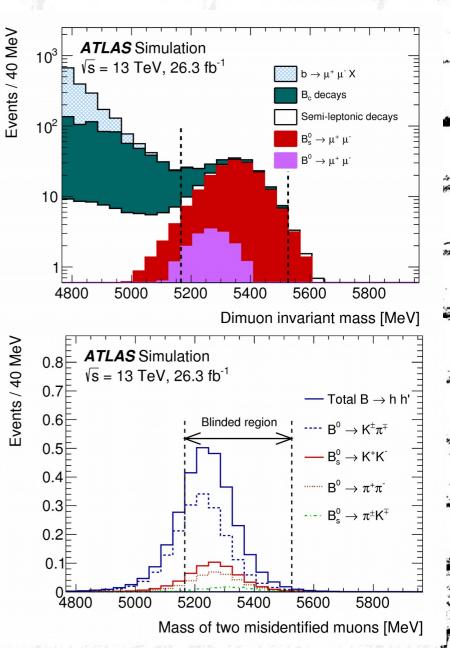
300

Background contributions

In order of relative magnitude:


- combinatorial background:
 - two real muons from different b quarks
- partially reconstructed B decays:
 - two real muons

10 siles


in the second

- Same Vertex (SV): $B \rightarrow \mu\mu X$ decays
- Same Side (SS): semileptonic decay cascac
 (b → cµv → s(d)µµvv)
- B_c decays: like $B_c \rightarrow J/\psi \ \mu \nu$
- all these accumulate at low values of the dimuon invariant mass
- semileptonic B and B_s decays:
 - one real muon and a charged hadron.
- peaking background from charmless

hadronic $B_{(S)}$ decays:

• smaller component, but overlays with the signal in dimuon invariant mass Marcella Bona (QMUL)

Tight muon-ID against hadron misidentification

mis-identification reduced by 0.39² using

standard 'tight' ATLAS selections

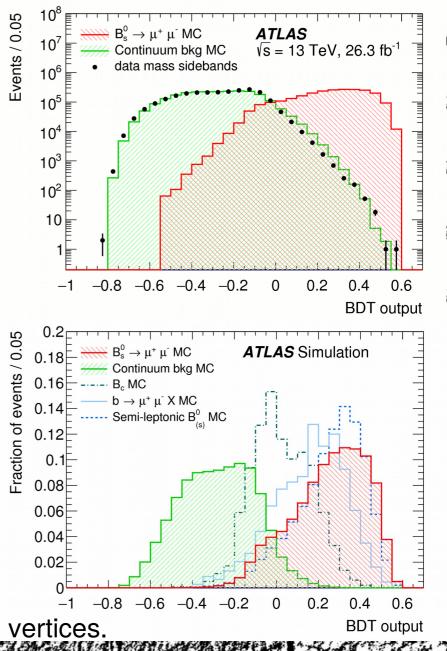
- studied on simulated samples
 - validated on control regions

-

ومنبعيك

Marcella Bona (QMUL)

negligible misidentification of protons (< 0.01%)</p>


misidentification is 0.08%(0.10%) for $K(\pi)$.

peaking-background events: 2.7±1.3

BDT against combinatorial bkg

MVA classifier to discriminate from signal

- trained and tested on mass sidebands
 - divided in 3 subsets
 - 3 independent BDTs
 - compatible performance
- 15 variables related to properties of B
 candidates, muons from the B decay, other
 tracks from the same collision and to pile-up vertices.

Normalisation B yield extraction

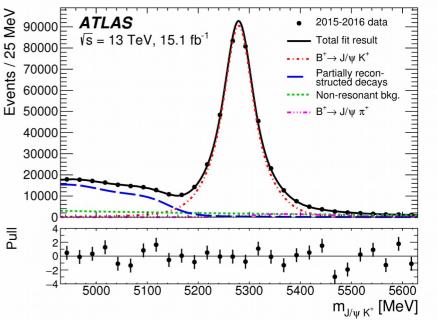
- unbinned maximum likelihood fit of the invariant mass $m_{J/\psi K} \rightarrow m_{\mu\mu K}$
- cross-checked with raw relative yield of J/ψπ over J/ψK ratio
 - $\rho_{\pi/K} = (3.71 \pm 0.09)\%$

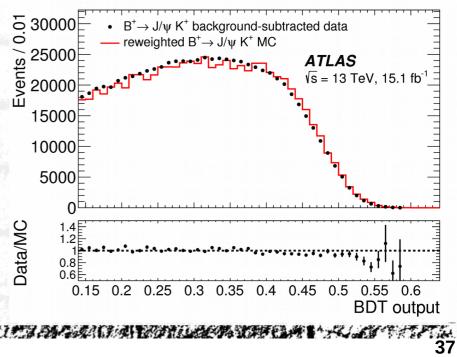
Jak

10 total

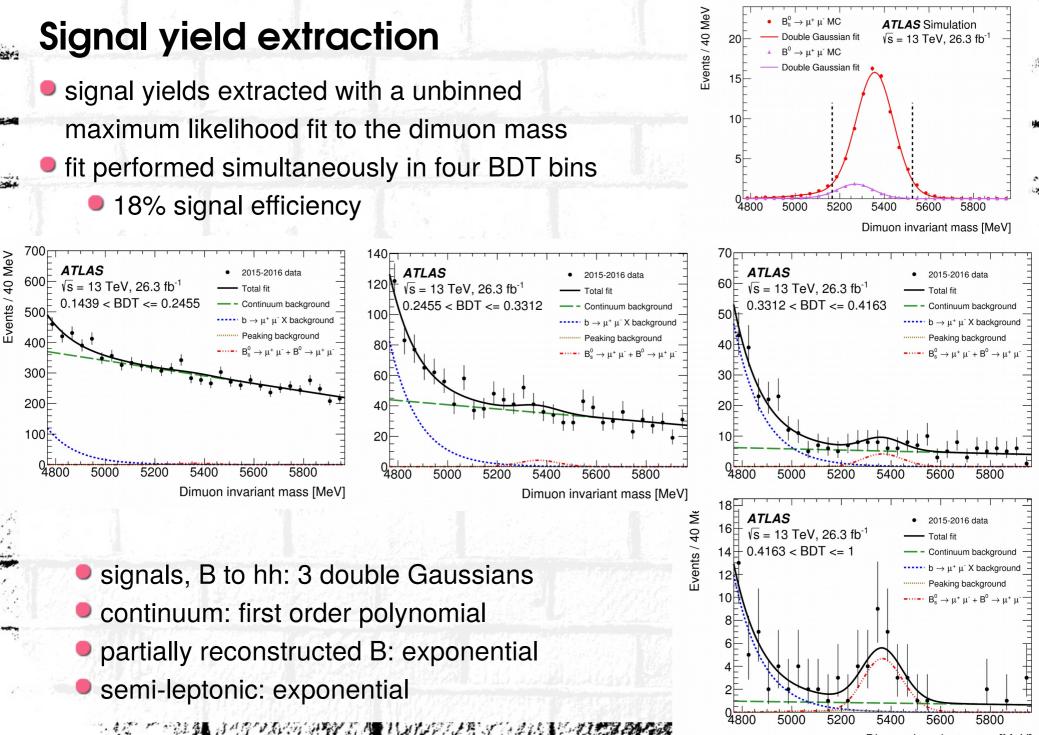
i interior

والمنجرة


$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$


Efficiency ratio $\epsilon_{\mu\mu}/\epsilon_{J/\psi K}$

- efficiency ratio from MC
- systematic from data-MC discrepancies
- For B⁰_S: 2.7% correction for lifetime


difference of the B⁰_S mass eigenstates

and a starting	Source	Contribution (%)
	Statistical	0.8
	BDT Input Variables	3.2
	Kaon Tracking Efficiency	1.5
	Muon trigger and reconstruction	1.0
	Kinematic Reweighting (DDW)	0.8
Marcella Bona	Pile-up Reweighting	0.6

Marcella Bona (QMUL)

Dimuon invariant mass [MeV]

Analysis strategy for B \rightarrow K^{*}µµ at CMS

- Phys. Lett. B 727 (2013) 77 and Phys. Lett. B 753 (2016) 424
 - A_{FB} and F_L parameters and differential branching fraction measured
 - no deviations from SM prediction
- PLB 781 (2018) 517

-

-

والمبغية

- fold around φ = 0 and θ_{ϱ} = $\pi/2$ $\rightarrow\,$ 6 parameters \rightarrow still too many
- \bullet $F_{_L},\,F_{_S}$, and $A_{_S}$ fixed from previous CMS measurement
- P_1 and P'_5 measured, A_s^5 nuisance parameter
- q² range divided in 9 bins:
 - 7 signal bins, in each the angular analysis performed independently
 - 2 control-region bins, for resonant decays $B^{\scriptscriptstyle 0} \to J/\psi K^* \,/\, B^{\scriptscriptstyle 0} \to \psi' K^*$
- Ilavour assignment: mis-tagged event fraction 14%, measured on MC
- two-step fit performed for 7 (+2 control regions) q² bins:
 - fit mass sidebands to determine the background shape
 - fit whole mass spectrum to extract 5 parameters: 2 yields, P₁, P'₅, A⁵_s

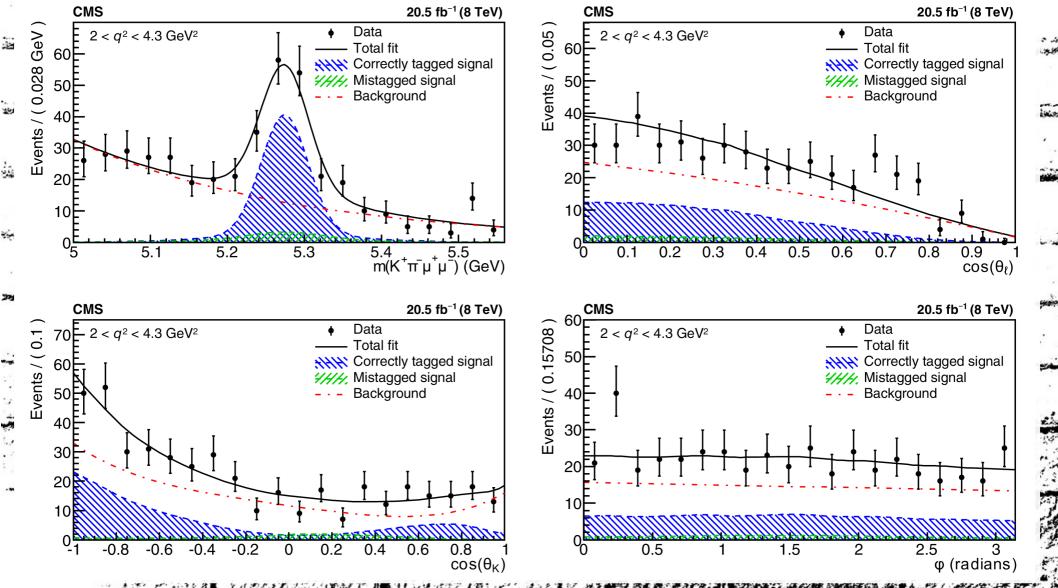
Analysis strategy for B \rightarrow K^{*}µµ at ATLAS

- Data collected in 2012 at 8 TeV with 20.3 fb⁻¹ Run 1 data
- Measured in 6 (overlapping) bins of q² in the range [0.04, 6] GeV²
- 4 sets of fits for three parameters (F_L , S_3 and S_1 with j=4,5,7,8)
- Selection of triggers with muon p_T thresholds starting at 4 GeV
- K* tagged by the kaon sign:

Jak.

in the second

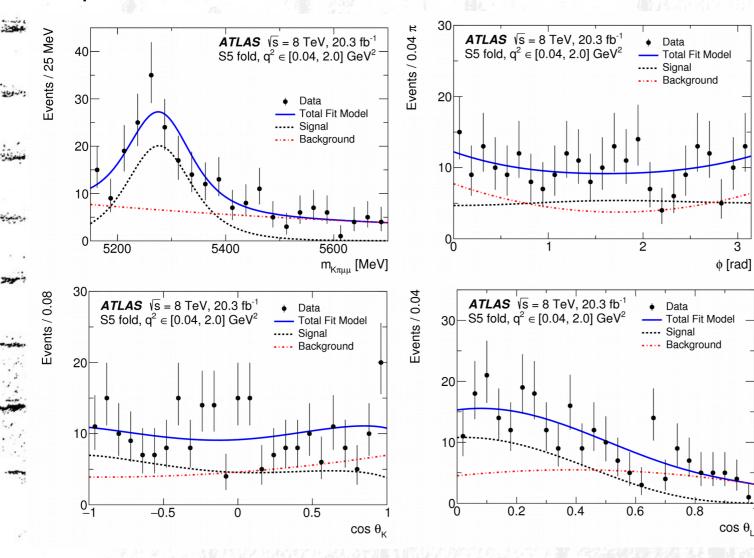
-


والبعينية

- dilution from mistag probability included in (1-2<w>):
- $\langle w \rangle \sim 10.9(1)\%$ with small dependence on q²
- 787 events selected with q² < 6 GeV²
- Extended unbinned maximum likelihood fits in each of the fit variants in each q² bin:
 - two step fit procedure: first fit the invariant mass distribution
 - then add to the fit the angular distributions to extract the F_L and S(P) parameters
- Signal shape studies from control samples K*J/ ψ and K* ψ (2S)

Fit projections for CMS

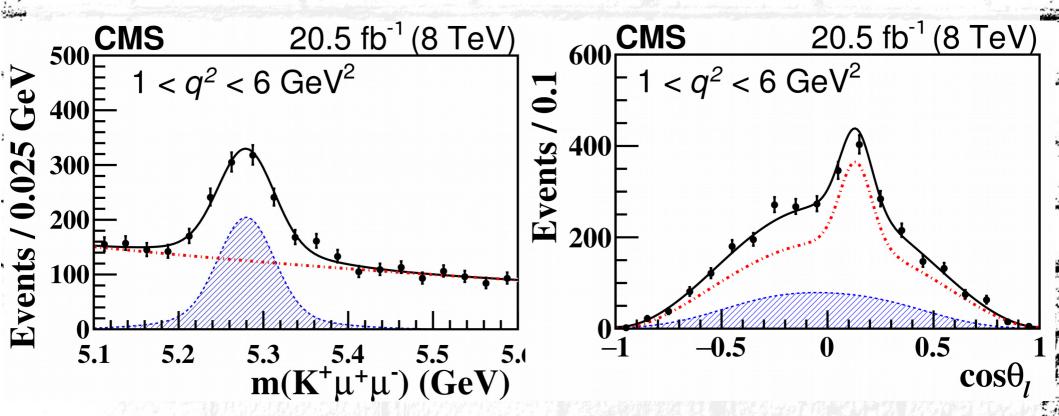
sairs


• fit projection for second bin: $2.0 < q^2 < 4.3 \text{ GeV}^2$.

Fit projections for **ATLAS**

Jet.

• fit m(K^{*} $\mu\mu$), cos θ_L , cos θ_K and ϕ to isolate signal and extract parameters of interest.


Data shown for [0.04,2.0] GeV² projections for the S_5 fit. Approx 106-128 signal events in 2 GeV² q² bin. Similar results for the other q² bins and other fit variants.

Angular analysis on B \rightarrow K⁺µµ at CMS

- Two-step unbinned extended maximum likelihood fit performed:
 - fit mass sidebands to determine the background shape
 - fixed in second step

10 siles

- fit whole mass spectrum with 4 floating parameters
 - 2 yields + 2 angular param

-

Strategies for data collection

Scouting

Since 2010, CMS is taking special "scouting" streams:

- Run reconstruction in trigger farm (muons, jets, ...)
- Write object features (e.g., four momenta) rather than the full event
- Few KB traded for 1 MB: can write thousands more
- Same now by ATLAS (TLA) and ALICE

Parking

1

والبعينية

Limitation to write 1000 evt/sec is not the trigger itself
The problem is computing resources downstream → disk & CPU power
In 2012, both ATLAS&CMS took more data, counting on shutdown computing pledges & opportunistic computing resources to process them
Extra 300-350 Hz of "parked" data are collected to extend the physics program: standard model measurements and searches for new physics
The triggers defining the parked datasets are either a looser version of the core physics triggers (for instance with reduced pT thresholds on the reconstructed objects) or brand new triggers with small overlap with the rest