On New Physics at tree level in hadronic B meson decays and the determination of the CKM angle γ

Gilberto Tetlalmatzi-Xolocotzi

Nikhef Theory Division

In collaboration with: Alexander Lenz

March 31, 2019
Why new Physics at Tree Level?

- Based on the data available there is plenty of room for deviations from the Standard Model (SM).

- New Physics (NP) effects in semileptonic tree level transitions $b \rightarrow c l \nu$:

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu)}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu)}$$

BABAR + LHCb + Belle combination 3.9 σ deviation with respect to the SM.

Amhis et al. (2016), arXiv:1612.07233 [hep-ex]

- NP effects in semileptonic tree level transitions $b \rightarrow u l \nu$:

By considering different ratios between the branching fractions for the processes:

$$B^- \rightarrow \mu^- \bar{\nu}_\mu, \quad B^- \rightarrow \tau^- \bar{\nu}_\tau, \quad \bar{B} \rightarrow \pi \ell \bar{\nu}_\ell, \quad \bar{B} \rightarrow \rho \ell \bar{\nu}_\ell$$

it is found that there is plenty of room for NP scalar and pseudoscalar interactions.

arXiv:1809.09051 [hep-ph]
We want to explore the possibility of having NP in the non-leptonic processes:

\[b \rightarrow u\bar{u}d \quad b \rightarrow u\bar{c}d \quad b \rightarrow c\bar{u}d \quad b \rightarrow c\bar{c}d \quad (d \rightarrow s). \]

In the SM these processes proceed at tree level.
New Physics at tree level in non-leptonic B decays

The possibility of having NP at tree level in hadronic B decays has been considered before to:

- **Address the 2010 D_0 dimuon asymmetry**

- **Evaluate enhancements in the B^0_d observable $\Delta \Gamma_d$**

- **Investigate the ΔA_{CP} puzzle in $B \rightarrow K\pi$ decays**

- **Evaluate the impact on the determination of the CKM angle γ**

However none of these studies has been complete or has accounted properly for the uncertainties due to non-factorizable hadronic contributions.
Effective field theory formalism

We have followed an effective theory approach

\[
\hat{Q}_1 = \left(\bar{c}_\alpha b_\beta \right)_{V-A} \left(\bar{d}_\beta u_\alpha \right)_{V-A}
\]
\[
\hat{Q}_2 = \left(\bar{c}_\alpha b_\alpha \right)_{V-A} \left(\bar{d}_\beta u_\beta \right)_{V-A}
\]

In the SM tree level interactions are described by two effective operators

The tree level effective Hamiltonian is

\[
\mathcal{H}_{\text{Tree}}^{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{p,p'=u,c} \lambda_{pp'}^d \left(C_{i}^{pp'} (\mu) \hat{Q}_1^{pp'} + C_{i}^{pp'} (\mu) \hat{Q}_2^{pp'} \right)
\]
\[
\lambda_{pp'}^d = V_{pb} V_{p'd}^*
\]

In the SM at NLO

\[
C_1(m_b) \sim -0.19 \quad C_2(m_b) \sim 1.08
\]
Although we are interested in NP at tree level our computations involve other topologies.

The full effective Hamiltonian used during our computations is given by

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_{p,p'=u,c} \lambda_{pp'}^d \sum_{i=1,2} C_{ij}^{pp'} (\mu) \hat{Q}_i^{pp'} \right)$$
Although we are interested in NP at tree level our computations involve other topologies.

The full effective Hamiltonian used during our computations is given by

\[
H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_{p,p'=u,c} \lambda_{pp'}^d \sum_{i=1,2} C_i^{pp'}(\mu) \hat{Q}_i^{pp'} + \sum_{p=u,c} \lambda_p^d \left[\sum_{i=3}^{10} C_i(\mu) \hat{Q}_i^P + C_{7\gamma} \hat{Q}_{7\gamma} + C_{8g} \hat{Q}_{8g} \right] \right) + h.c.,
\]

where \(\hat{Q}_i \) are operators representing different effects such as QCD penguins, electro-weak penguins, electromagnetic operator, and chromomagnetic operator.
Effective field theory formalism

Although we are interested in NP at tree level our computations involve other topologies.

The full effective Hamiltonian used during our computations is given by

\[\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_{p,p'=u,c} \lambda^d_{pp'} \sum_{i=1,2} C^p_{ip} (\mu) \hat{Q}^p_{ii} \right. \\
+ \sum_{p=u,c} \lambda^d_p \left[\sum_{i=3}^{10} C_{ip} (\mu) \hat{Q}_i^p + C_{7\gamma} \hat{Q}_{7\gamma} + C_{8g} \hat{Q}_{8g} \right] \right) + h.c., \]

\[\lambda^d_p = V_{pb} V^*_{pd} \]

\[\hat{Q}_{1}^{pp'} - \hat{Q}_{2}^{pp'} : \text{Tree level.} \]

\[\hat{Q}_3 - \hat{Q}_6 : \text{QCD Penguins.} \quad \hat{Q}_7 - \hat{Q}_{10} : \text{Electro-weak Penguins.} \]

\[\hat{Q}_{7\gamma} : \text{Electromagnetic operator.} \quad \hat{Q}_{7g} : \text{Chromomagnetic operator.} \]
Introducing NP effects at tree level

The NP effects are introduced at the matching scale M_W

$$C_{1,2}(M_W) = C_{1,2}^{SM}(M_W) + \Delta C_{1,2}^{NP}(M_W).$$

To assess the size of $\Delta C_{1,2}^{NP}$ we perform a χ^2-squared fit.

To implement the fit we use the software MyFitter

$$\chi^2(\vec{\omega}) = \sum_i \left(\frac{\hat{O}_{i,\text{exp}} - \hat{O}_{i,\text{theo}}(\vec{\omega})}{\sigma_{i,\text{exp}}} \right)^2$$

$$\vec{\omega} = (\Delta C_1^{NP}(M_W), \Delta C_2^{NP}(M_W); \vec{\lambda}_{\text{nuisance}})$$

Our nuisance parameters include CKM elements, decay constants, form factors, masses, etc:

$$\vec{\lambda}_{\text{nuisance}} = |V_{ub}/V_{cb}|, |V_{us}|, \mu, f_\pi, F_{B \to \pi}^+, ...,$$ etc
Introducing NP effects at tree level

Due to the non-diagonal nature of the anomalous dimension matrices, when solving the R.G.E.

\[\mu \frac{d \bar{\mathcal{C}}}{d \mu} = \hat{\gamma}^T \bar{\mathcal{C}}. \]

the NP effects propagate to the other Wilson coefficients as well

\[\bar{\mathcal{C}}(\mu) = \hat{U}(\mu, \mu_W, \hat{\gamma}, \alpha_s, \alpha) \bar{\mathcal{C}}(M_W). \]

Our initial conditions for the Wilson coefficients include strong + electroweak effects at NLO

\[\bar{\mathcal{C}}(M_W) = \bar{\mathcal{C}}^{(0)}(M_W) + \frac{\alpha_s(M_W)}{4\pi} \bar{\mathcal{C}}^{(1)}(M_W) \]

\[+ \frac{\alpha}{4\pi} \left[\bar{\mathcal{C}}^{(0)}(M_W) + \frac{\alpha_s(M_W)}{4\pi} \bar{\mathcal{C}}^{(1)}(M_W) + \bar{R}_e^{(0)}(M_W) \right]. \]

Introducing NP effects at tree level

To probe for potential NP phases we assume that our Wilson coefficients are complex.

To obtain bounds on ΔC_{1NP}^1 and ΔC_{2NP}^2 we use:

- Branching fractions of hadronic processes.
- CP asymmetries

$$\mathcal{A}_f^{CP}(t) = \frac{d\Gamma[B_q^0 \to f](t)/dt - d\Gamma[\bar{B}_q^0 \to f](t)/dt}{d\Gamma[B_q^0 \to f](t)/dt + d\Gamma[\bar{B}_q^0 \to f](t)/dt} \approx S_f \sin \Delta M_q t - C_f \cos \Delta M_q t,$$

The mixed induced CP asymmetry S_f allow us to constrain new weak phases.

$$S_f \equiv \frac{2I m(\lambda_f^q)}{1 + |\lambda_f^q|^2}, \quad \lambda_f^q := e^{-2i\beta} \frac{\bar{A}_f^q}{A_f^q}.$$

- Neutral B Mixing observables
- Life-time ratios

The full χ^2-fit takes up to 1 week on 100 cores in the IPPP cluster (Durham University, UK).

Current progress in the Nikhef Stoomboot cluster.
Observables considered

\[b \rightarrow u\bar{d} \]

- **\(B \rightarrow \pi\pi \):**

\[
R_{\pi\pi} = \frac{\Gamma(B^- \rightarrow \pi^0\pi^-)}{d\Gamma(\bar{B}_d^0 \rightarrow \pi^+l^-\bar{\nu}_l)/dq^2|q^2=0}
\]

\[
S_{\pi\pi} = \frac{2Im\left(\frac{e^{-2i\beta} \bar{A}_{\pi^0\pi^-}}{A_{\pi^0\pi^-}}\right)}{1 + |\frac{\bar{A}_{\pi^0\pi^-}}{A_{\pi^0\pi^-}}|^2}
\]

- **\(B \rightarrow \rho\pi \):**

\[
S_{\rho\pi} = \frac{2Im\left(\frac{e^{-2i\beta} \bar{A}_{\rho\pi}}{A_{\rho\pi}}\right)}{1 + |\frac{\bar{A}_{\rho\pi}}{A_{\rho\pi}}|^2}
\]

- **\(B \rightarrow \rho\rho \):**

\[
R_{\rho\rho} = \mathcal{B}_r(B^- \rightarrow \rho^-\rho_L^0)/\mathcal{B}_r(\bar{B}_d^0 \rightarrow \rho_L^+\rho_L^-)
\]
Observables considered

$b \to c\bar{c}d$

- $B \to D^* \pi$

 $$R_{D^*\pi} = \frac{\Gamma(\bar{B}^0 \to D^{*+}\pi^-)}{d\Gamma(\bar{B}^0 \to D^{*+}l^-\bar{\nu}_l)/dq^2|_{q^2=m^2}}$$

$b \to c\bar{c}d$

- $B \to X_d \gamma$

 $$\mathcal{B}_r(B \to X_d \gamma)$$

$b \to c\bar{c}s$

- $B \to X_s \gamma$

 $$\mathcal{B}_r(B \to X_s \gamma)$$

- $B \to J/\psi K$

 $$S_{\rho\pi} = \frac{2\text{Im}\left(e^{-2i\beta} \frac{\bar{A}_{J/\psi K}}{A_{J/\psi K}}\right)}{1 + \left|\frac{\bar{A}_{J/\psi K}}{A_{J/\psi K}}\right|^2}$$
Life-time ratio: τ_{B_s}/τ_{B_d}

B-physics anomalies.

NP in $\hat{Q}_1 = \left(\bar{c}_\alpha b_\beta \right)_{V-A} \left(\bar{s}_\beta c_\alpha \right)_{V-A}$ and $\hat{Q}_2 = \left(\bar{c}_\alpha b_\alpha \right)_{V-A} \left(\bar{s}_\beta c_\beta \right)_{V-A}$

can induce deviations in the Wilson coefficient of $\hat{Q}_9V = \frac{\alpha}{4\pi} \left(\bar{s}_L \gamma_{\mu} \hat{b}_L \right) \left(\bar{\ell} \gamma^{\mu} \hat{\ell} \right)$

\[
\Delta C_{9}^{\text{eff}} \bigg|_{\mu=m_b} = \left[8.48 \Delta C_1 + 1.96 \Delta C_2 \right] \bigg|_{\mu=M_W}.
\]

Observables considered

Using the results for complex $\Delta C_{9}^{\text{eff}}$ provided in

we obtain the following regions

![Graphs showing the regions for $\Delta C_{9}^{s,cc}$](image-url)
Constraints from neutral B meson mixing

The dynamics of neutral B meson mixing is obtained from the following equation

$$i \frac{d}{dt} \left(\begin{array}{c} |B^0(t)\rangle \\ |\bar{B}^0(t)\rangle \end{array} \right) = \hat{H} \left(\begin{array}{c} |B^0(t)\rangle \\ |\bar{B}^0(t)\rangle \end{array} \right).$$

$$\hat{H} = \begin{pmatrix} M_{11} - \frac{i}{2} \Gamma_{11} & M_{12} - \frac{i}{2} \Gamma_{12} \\ M^*_{12} - \frac{i}{2} \Gamma^*_{12} & M_{11} - \frac{i}{2} \Gamma_{11} \end{pmatrix},$$

In the basis where \hat{H} is diagonal we have

$$i \frac{d}{dt} \left(\begin{array}{c} |B_H(t)\rangle \\ |B_L(t)\rangle \end{array} \right) = \begin{pmatrix} \lambda_H & 0 \\ 0 & \lambda_L \end{pmatrix} \left(\begin{array}{c} |B_H(t)\rangle \\ |B_L(t)\rangle \end{array} \right).$$
Constraints from neutral B meson mixing

$$\lambda_H = M_H - \frac{i}{2} \Gamma_H \quad \lambda_L = M_L - \frac{i}{2} \Gamma_L.$$

Neutral B mixing is described by two observables

$$\Delta M = M_H - M_L \quad \Delta \Gamma = \Gamma_L - \Gamma_H.$$

The insertion of two tree-level operators contributes to neutral B mixing

- $a_{s1}^s = |\Gamma_{s1}^s|/|M_{s1}^s| \sin \phi_{s1}$: $b \to u\bar{u}s, b \to u\bar{c}s, b \to c\bar{c}s$
- $\Delta \Gamma_s$: $b \to u\bar{u}s, b \to u\bar{c}s, b \to c\bar{c}s$
- a_{d1}^s: $b \to u\bar{d}d, b \to u\bar{c}d, b \to c\bar{c}d$
QCD Factorization

We include different observables calculated through the QCD Factorization formalism:

\[B \rightarrow \pi\pi, \rho\pi, \rho\rho, D^*\pi, J/\Psi K_{S,L}. \]

Let \(M_1 \) and \(M_2 \) be two final state mesons such that the spectator quark finishes inside \(M_1 \), in naive factorization

\[\langle M_1 M_2 | \hat{Q}_i | B \rangle \approx F^{B \rightarrow M_1} f_{M_2}. \]

\(F^{B \rightarrow M_1} \) : Form factor for the \(B \rightarrow M_1 \) transition.

\(f_{M_2} \) : Decay constant associated with the \(M_2 \) meson.

Interactions between the spectator quark and \(M_2 \) are ignored.
In QCD factorization

\[
\langle M_1 M_2 | \hat{Q}_i | B \rangle = \sum_j F_{j}^{B \to M_1}(0) \int_0^1 du T_{ij}^I(u) \Phi_{M_2}(u) + (M_1 \leftrightarrow M_2)
\]

\[
+ \int_0^1 d\xi dudv T_{i}^{II}(\xi, u, v) \Phi_B(\xi) \Phi_{M_1}(v) \Phi_{M_2}(u).
\]

\[\Phi_M:\] Light Cone Distribution Amplitude (LCDA) for the meson \(M\).

\[T_{ij}^I:\] Penguin contributions (calculated perturbatively).

\[T_{i}^{II}:\] Spectator quark interactions (calculated perturbatively).

Power corrections

Important source of uncertainties come from non-factorizable contributions which are Λ_{QCD}/m_b suppressed. They arise in:

Hard spectator Scattering

\[
H_i(M_1M_2) \propto \int_0^1 d\xi \frac{\Phi_B(\xi)}{\xi} \int_0^1 dx \int_0^1 dy \left[\frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{\bar{x}\bar{y}} + r_{M_1}^{M_2} \frac{\Phi_{M_2}(x)\Phi_{m_1}(y)}{x\bar{y}} \right]
\]

For the first moment of the LCDA of the B meson we have

\[
\int_0^1 d\xi \frac{\Phi_B(\xi)}{\xi} \equiv \frac{m_B}{\lambda_B}
\]

The treatment of these singularities is model dependent. We use

\[
X_H = \left(1 + \rho_H e^{i\phi_H}\right) \ln\frac{m_B}{\Lambda_h}
\]
Power corrections

Annihilation topologies

In analogy with the Hard Spectator Scattering the end point singularities arising from annihilation topologies are parameterized as

$$\chi_A = \left(1 + \rho_A e^{i\phi_A}\right)\ln \frac{m_B}{\Lambda_h}$$

We assign 200% uncertainty to the power suppressed singularities.

$$0 \leq \rho_H \leq 2 \quad 0 \leq \phi_H \leq 2\pi$$

$$0 \leq \rho_A \leq 2 \quad 0 \leq \phi_A \leq 2\pi$$

Our fits are highly affected by the power suppressed divergences arising from annihilation topologies.
Power corrections

To illustrate the size of the uncertainties from power suppressed singularities consider:

\[B^0 \rightarrow \pi^+ \pi^-, \quad \bar{B}^0 \rightarrow \pi^+ \pi^- \]

The error budget for the observable

\[S_{\pi \pi} = \frac{2\text{Im} \left(e^{-2i\beta} \frac{\bar{A}_{\pi^+ \pi^-}}{A_{\pi^+ \pi^-}} \right)}{1 + |\frac{\bar{A}_{\pi^+ \pi^-}}{A_{\pi^+ \pi^-}}|^2} \]

is

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(X_A))</td>
<td>39.96%</td>
</tr>
<tr>
<td>(\delta(</td>
<td>V_{ub}/V_{cb}</td>
</tr>
<tr>
<td>(\delta(\gamma))</td>
<td>8.35%</td>
</tr>
<tr>
<td>(\delta(\mu))</td>
<td>3.33%</td>
</tr>
<tr>
<td>(\delta(m_s))</td>
<td>3.20%</td>
</tr>
<tr>
<td>(\delta(X_H))</td>
<td>2.37%</td>
</tr>
<tr>
<td>(\delta(\Lambda_Q^{CD}))</td>
<td>1.84%</td>
</tr>
<tr>
<td>(\delta(F_{B^{-}}^{\pi}))</td>
<td>0.86%</td>
</tr>
<tr>
<td>(\sum \delta)</td>
<td>42.27%</td>
</tr>
</tbody>
</table>

Divergences from annihilation topologies play an important role in the final uncertainty!!.
Examples of the regions obtained for the individual observables are

\[\mathcal{B}(\bar{B} \to X_s \gamma) \]

\[a_{s/l}^d \]

\[\alpha \]
Implications on $\Delta \Gamma_d$

$-3.91 < \Delta \Gamma_d;\text{exp}/\Delta \Gamma_d;\text{SM} < 2.60$

$(\Delta \Gamma_d/\Gamma_d)_{\text{exp}}$ from HFAG, online update 2017

$b \rightarrow u\bar{u}d: 0 < \Delta \Gamma_d/\Delta \Gamma_d;\text{SM} < 1.76$

$b \rightarrow c\bar{c}d: -0.93 < \Delta \Gamma_d/\Delta \Gamma_d;\text{SM} < 2.60$
To obtain maximal constraints we assume $\Delta C_{1,2} = \Delta C_{1,2}^{uu} = \Delta C_{1,2}^{cu} = \Delta C_{1,2}^{cc}$.
The CKM angle γ can be extracted from

$$r_B e^{i(\delta_B - \gamma)} = \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)}$$

New physics effects in C_1 and C_2 modify $r_B e^{i(\delta_B - \gamma)}$ as

$$r_B e^{i(\delta_B - \gamma)} \to r_B e^{i(\delta_B - \gamma)} \cdot \left[\frac{C_2 + \Delta C_2 + r_{A'} (C_1 + \Delta C_1)}{C_2 + r_{A'} C_1} \frac{C_2 + r_A C_1}{C_2 + \Delta C_2 + r_A (C_1 + \Delta C_1)} \right] .$$

$$r_{A'} = \frac{\langle \bar{D}^0 K^- | Q^\text{us} \bar{c} | B^- \rangle}{\langle \bar{D}^0 K^- | Q^\text{us} \bar{c} | B^- \rangle} , \quad r_A = \frac{\langle D^0 K^- | Q^\text{us} \bar{c} | B^- \rangle}{\langle D^0 K^- | Q^\text{us} \bar{c} | B^- \rangle} .$$

$$r_B e^{i(\delta_B - \gamma)} \to r_B e^{i(\delta_B - \gamma)} \cdot \left[1 + (r_{A'} - r_A) \frac{\Delta C_1}{C_2} \right] .$$

$$\delta \gamma = (r_A - r_{A'}) \frac{\text{Im}\Delta C_1}{C_2}$$
Effects on CKM γ

Based on a naive estimation of r_A' we obtain the following plot

\[\gamma = (72.1^{+5.4}_{-5.7})^\circ \]

CKMfitter online update 2018

Preliminary results/ Anomalies and life-times not yet included /Undergoing analysis!
New Physics in tree level non leptonic can be sizeable.

Colour suppressed ΔC_1: $Re \Delta C_1 \approx 0.20$, $Im \Delta C_1 \approx 0.40$

$\Delta \Gamma_d$ can be enhanced by a factor of 2.6 with respect to the SM

$\Delta C_1, \Delta C_2$ affected by: power corrections, renormalization scale, CKM parameters,…

CKM γ is sensitive to $Im \Delta C_1$

Reduce the size of $Im \Delta C_1$ using $sin 2\beta$: $A_{B \rightarrow J/\psi K_S}$?

Analysis in progress :)!