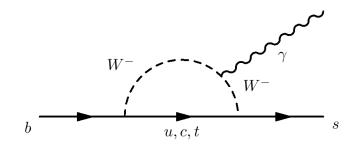
# Latest results with radiative decays and future prospects

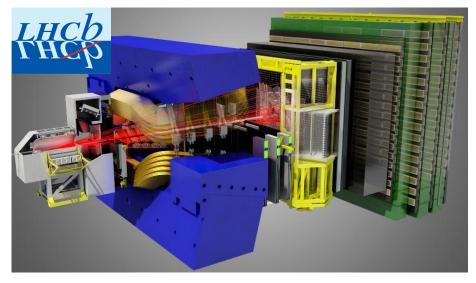

Towards the Ultimate Precision in Flavour Physics 03/04/19 IPPP/Durham

### **Carla Marin Benito**



### **Radiative b-decays**

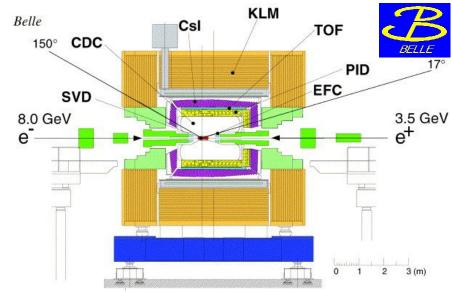
 $b \rightarrow s(d)y$  are Flavour-Changing-Neutral-Currents (FCNC)  $\rightarrow$  crucial tests of the Standard Model (SM)



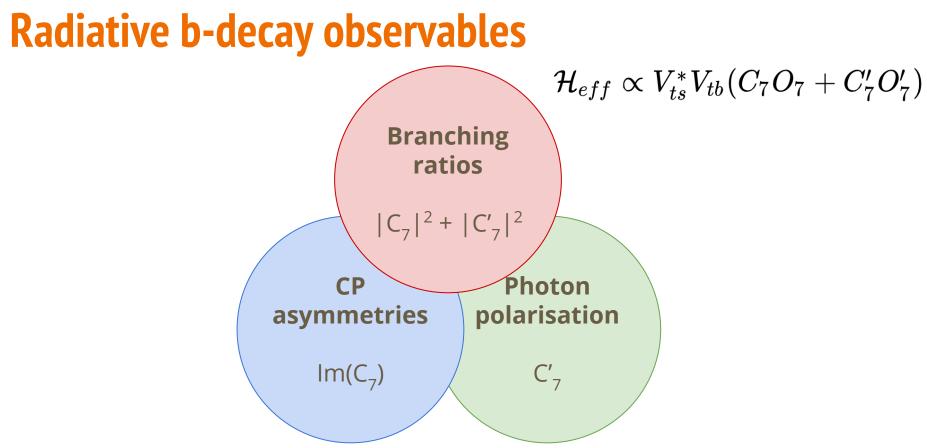

 $\mathcal{H}_{eff} \propto V_{ts}^* V_{tb} (C_7 O_7 + C_7' O_7')$ 

- generated by  $O_7$  at leading order (LO) in the SM,  $O'_7$  suppressed by  $m_a/m_b$
- C<sub>7</sub> strongly constrained by BR and direct CP measurements
- room for New Physics (NP) in  $C'_7 \rightarrow$  photon polarisation

#### Many BaBar and Cleo contributions as well

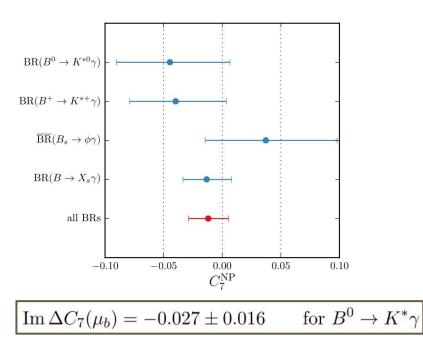

### The major players

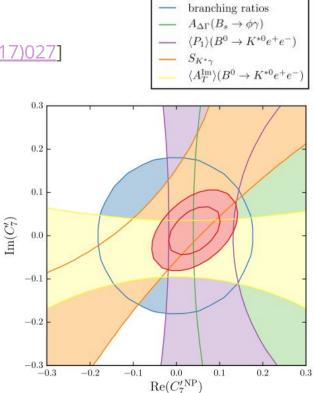



#### <u>JINST 3 (2008) S08005</u>

- pp collisions: high background
- 7 fb<sup>-1</sup> on tape: all b species
- forward spectrometer

#### Nucl. Instrum. Methods Phys. Res., A 479, 117 (2002)





- e<sup>+</sup>e<sup>-</sup> collisions: very clean environment
- 1  $ab^{-1}$  on tape:  $B^0$  and  $B^+$ , some  $B_s$  as well
- hermetic detector, large coverage

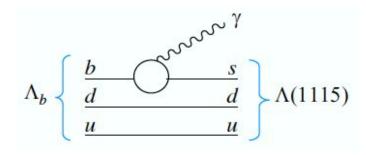


### **New Physics constraints**

Paul & Straub [JHEP04(2017)027]

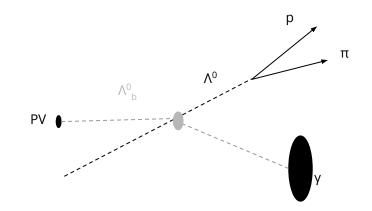





global

# Latest results

LHCb-PAPER-2019-010


First observation of  $\Lambda_{h} \rightarrow \Lambda^{0} \gamma$ 

Baryonic b  $\rightarrow$  sy not observed BR < 1.9·10<sup>-3</sup> [CDF <u>PhysRevD.66.112002</u>]

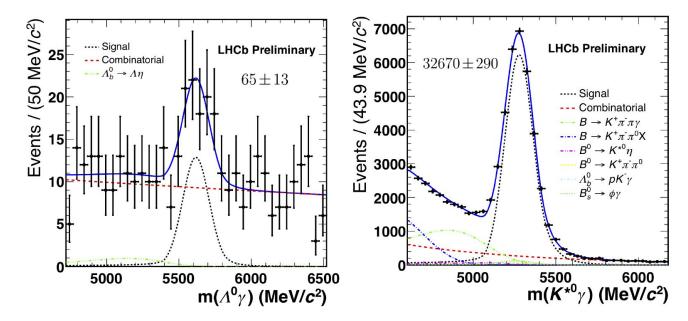


 $BR_{SM} \in [0.06-1] \times 10^{-5}$  [Wang et al., Mannel et al., Gan et al., Faustov et al.]

Gives access to photon polarisation [Mannel & Recksiegel, Hiller & Kagan] Very challenging reconstruction  $\rightarrow$  dedicated reconstruction in Run 2



Huge combinatorial background mitigated with performant MVA


#### LHCb-PAPER-2019-010

# First observation of $\Lambda_{\rm b} \rightarrow \Lambda^0 \gamma$

LHCb 2016 data

Significance of 5.6 First observation!

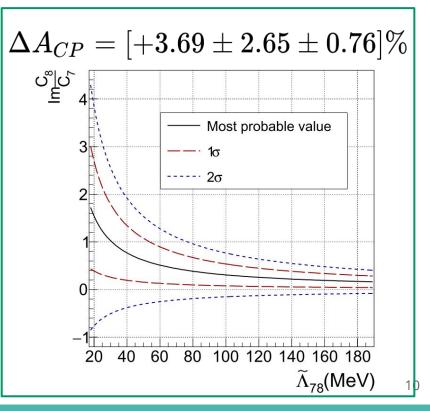
Opens doors to photon polarisation measurement



 ${\cal B}(\Lambda_b^0 o \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) imes 10^{-6}$ 

# Isospin ( $\Delta_{0}$ ) and CP ( $A_{CP}$ ) asymmetry in $B \rightarrow X_{s}\gamma$

- BR( $B \rightarrow X_s \gamma$ ) places strong constraints on NP models
  - $\sigma_{th} \sim \sigma_{exp} \sim 7\%$  but  $\sigma_{Belle II} \sim 3\% \rightarrow$  theory improvement needed!
  - $\circ$   $\sigma_{th}$  dominated by resolved photon contribution (RP): hard gluon light quark scattering


$$rac{\mathcal{B}^{78}_{\mathcal{RP}}}{\mathcal{B}}\simeq -rac{(1\pm0.3)}{3}\Delta_{0-}$$

- Recent evidence for isospin breaking in  $B_d \rightarrow K^*\gamma$  [Belle <u>Phys.Rev.Lett.119.191802</u>]
- $\circ$  if similar value for inclusive decay  $\rightarrow$  sizeable RP; else  $\rightarrow$  improvement on  $\sigma_{th}$
- Direct CP asymmetry  $\sigma_{th}$  also dominated by RP  $\rightarrow$  new observable:  $\Delta A_{CP} = A_{CP}(B^+ \rightarrow X_s^+ \gamma) - A_{CP}(B^0 \rightarrow X_s^0 \gamma) \propto \tilde{\Lambda}_{78} Im(\frac{C_8}{C_7})$ 
  - $\Lambda_{78}$  term from interference between C<sub>7</sub> and C<sub>8</sub> operators

# **Isospin (** $\Delta_{0-}$ **) and CP (** $A_{CP}$ **) asymmetry in B** $\rightarrow$ **X**<sub>s</sub>**Y**

- Full Belle data
- Inclusive = sum of exclusive

$$egin{aligned} \Delta_{0-} &= [-0.48 \pm 1.49 \pm 0.97 \pm 1.15]\% \ &rac{\mathcal{B}_{ ext{RP}}^{78}}{\mathcal{B}} &\simeq (+0.16 \pm 0.50 \pm 0.32 \pm 0.38 \pm 0.05)\% \end{aligned}$$



# Photon polarization in $\boldsymbol{B}_{_{S}} \rightarrow \boldsymbol{\phi} \boldsymbol{\gamma}$

Time dependent decay rate for f<sub>CP</sub> states gives access to photon polarization:

$$\Gamma(t) \propto e^{-\Gamma_s t} \left[ \cosh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) - \mathcal{A}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) \pm \mathcal{C}_{CP} \cos\left(\Delta m_{(s)} t\right) \mp \mathcal{S}_{CP} \sin\left(\Delta m_{(s)} t\right) \right]$$

$$\mathcal{A}_{\phi\gamma}^{\Delta} = -0.98^{+0.46}_{-0.52} + 0.20}_{-0.52}$$
PRL 118(2017)2,021801

$$\mathcal{A}_{\phi\gamma}^{\Delta} \simeq \frac{\operatorname{Re}(e^{-i\phi_s}C_7 C_7')}{|C_7|^2 + |C_7'|^2} \quad S_{\phi\gamma} \simeq \frac{\operatorname{Im}(e^{-i\phi_s}C_7 C_7')}{|C_7|^2 + |C_7'|^2}$$

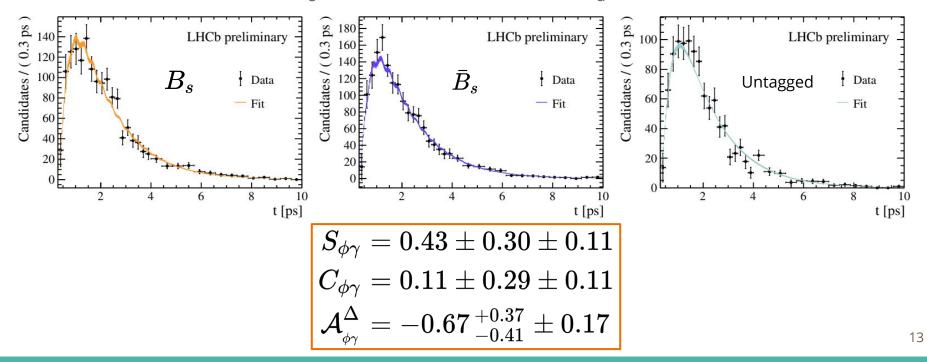
# Photon polarization in $\boldsymbol{B}_{_{S}} \rightarrow \boldsymbol{\phi} \boldsymbol{\gamma}$

Time dependent decay rate for f<sub>CP</sub> states gives access to photon polarization:

$$\Gamma(t) \propto e^{-\Gamma_{s}t} \left[ \cosh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) - \mathcal{A}^{\Delta} \sinh\left(\frac{\Delta\Gamma_{(s)}}{2}\right) \pm \mathcal{C}_{CP} \cos\left(\Delta m_{(s)}t\right) \mp \mathcal{S}_{CP} \sin\left(\Delta m_{(s)}t\right) \right]$$

$$\mathcal{A}_{\phi\gamma}^{\Delta} = -0.98^{+0.46}_{-0.52}_{-0.20}$$

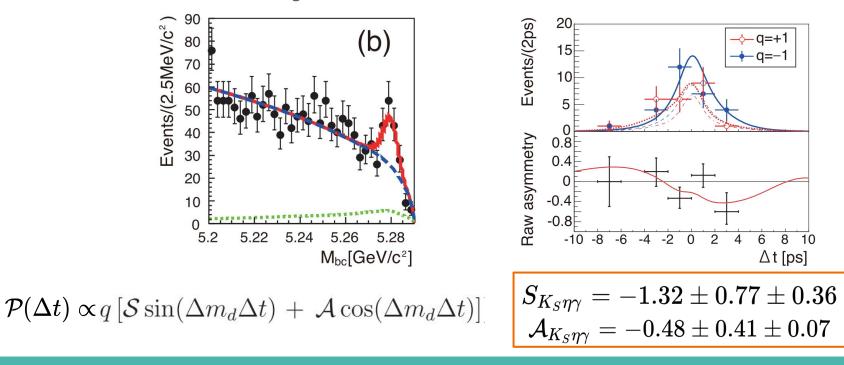
$$\frac{\mathcal{A}_{\phi\gamma}^{\Delta} = -0.98^{+0.46}_{-0.52}_{-0.20}}{\mathbb{PRL} 118(2017)2.021801}$$


$$\mathcal{A}_{\phi\gamma}^{\Delta} \simeq \frac{\operatorname{Re}(e^{-i\phi_{s}}C_{7}C_{7}')}{|C_{7}|^{2} + |C_{7}'|^{2}} \quad S_{\phi\gamma} \simeq \frac{\operatorname{Im}(e^{-i\phi_{s}}C_{7}C_{7}')}{|C_{7}|^{2} + |C_{7}'|^{2}}$$

$$\operatorname{NEW} \text{ from Moriond QCD!}$$

#### LHCb-PAPER-2019-015

# Photon polarization in $\boldsymbol{B}_{_{\boldsymbol{S}}} \to \boldsymbol{\phi} \boldsymbol{\gamma}$


• Simultaneous fit to  $B_s \rightarrow \varphi \gamma$  and control mode  $B_d \rightarrow K^* \gamma$ :



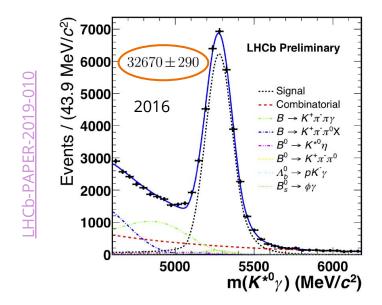
#### Phys.Rev.D.97.092003

# Photon polarization in $B^0 \rightarrow K_s \eta \gamma$

• Full Belle data,  $m(K_s\eta) < 2.1 \text{ GeV/c}^2$ , inclusive tagging



# **Future prospects**



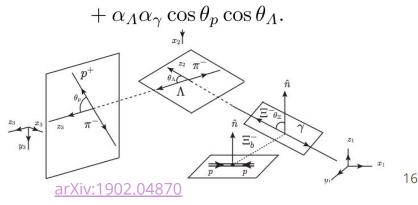



+ upgrades

### LHCb Run1+2: BR and asymmetries

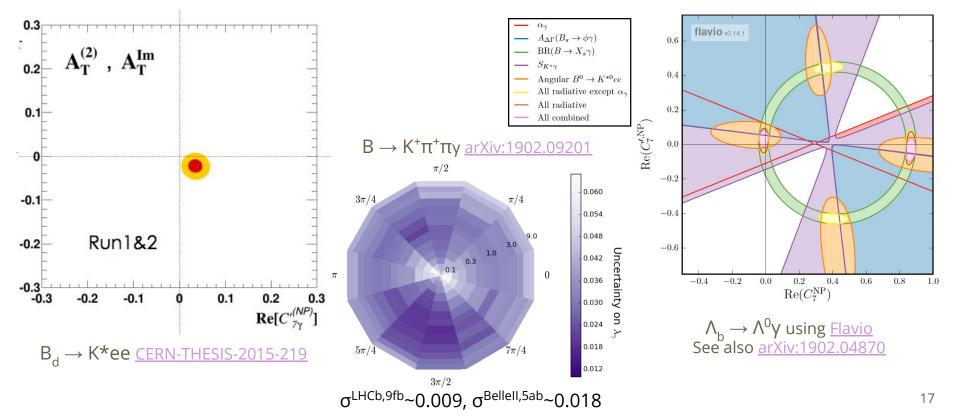
BR(B<sub>s</sub> $\rightarrow \phi \gamma$ ) and  $\Delta CP(B_d \rightarrow K^* \gamma)$ 




+ measure isospin asymmetry+ explore higher Kπ and KK states

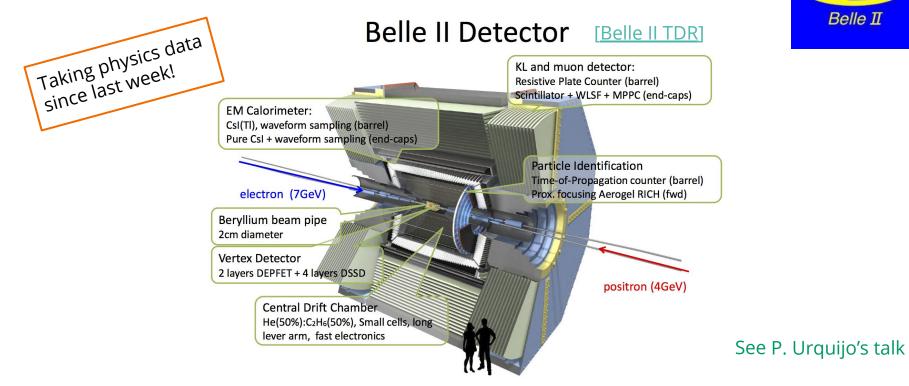
Explore more b-baryons

- Λ<sub>b</sub>→Λ\*(pK)γ
- $\Lambda_{b}^{"} \rightarrow N^{*}(p\pi)\gamma$ •  $\Xi_{b}^{"} \rightarrow \Xi^{"}\gamma \text{ and } \Omega_{b}^{"} \rightarrow \Omega^{"}\gamma$


The latter give access to photon polarisation:

 $W(\theta_A, \theta_p) \propto 1 + \alpha_A \alpha_\Xi \cos \theta_p + \alpha_\gamma \alpha_\Xi \cos \theta_A$ 




#### See E. Kou's talk

### LHCb Run1+2: photon polarisation



### The new signing





#### Belle II Physics Book

# Belle II: inclusive $B \rightarrow X_{s,d} \gamma$

### Work on systematics is crucial!

### Fully inclusive:

- photon  $E_T > 1.6$  GeV possible
- better control of neutral hadron background needed

### Sum of exclusive:

• add new modes with more stats

| Observables                                                                         | Belle $0.71 \mathrm{ab}^{-1}$ | Belle II $50 \mathrm{ab}^{-1}$ |
|-------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| $Br(B \to X_s \gamma)_{inc}^{lep-tag}$                                              | 5.3%                          | 3.2%                           |
| $\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$ | 13%                           | 4.2%                           |
| $Br(B \to X_s \gamma)_{sum-of-ex}$                                                  | 10.5%                         | 5.7%                           |
| $\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$                                  | 2.1%                          | 0.63%                          |
| $\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$                          | 9.0%                          | 0.85%                          |
| $A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$                                       | 1.3%                          | 0.19%                          |
| $A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$                                   | 1.8%                          | 0.26%                          |
| $A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$                                   | 1.8%                          | 0.25%                          |
| $A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm lep-tag}$                               | 4.0%                          | 0.48%                          |
| $A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$                               | 8.0%                          | 0.70%                          |
| $\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$                                | 2.5%                          | 0.30%                          |
| $\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$                        | 16%                           | 1.3%                           |
| $\operatorname{Br}(B \to X_d \gamma)_{\text{sum-of-ex}}$                            | 30%                           | 14%                            |
| $\Delta_{0+}(B \to X_d \gamma)_{\text{sum-of-ex}}$                                  | 30%                           | 3.6%                           |
| $A_{CP}(B^+ \to X^+_{u\bar{d}}\gamma)_{\text{sum-of-ex}}$                           | 42%                           | 5.1%                           |
| $A_{CP}(B^0 \to X^0_{d\bar{d}}\gamma)_{\text{sum-of-ex}}$                           | 84%                           | 10%                            |
| $A_{CP}(B \to X_d \gamma)_{\text{sum-of-ex}}$                                       | 38%                           | 4.6%                           |
| $\Delta A_{CP}(B \to X_d \gamma)_{\text{sum-of-ex}}$                                | 93%                           | 11% 1                          |

#### Belle II Physics Book

# **Belle II: exclusive decays**

### Statistically dominated

### Also double-radiative decays:

| Observables                                | Belle II $5  \mathrm{ab}^{-1}$ | Belle II $50 \mathrm{ab}^{-1}$ |
|--------------------------------------------|--------------------------------|--------------------------------|
| $\operatorname{Br}(B_d \to \gamma \gamma)$ | 30%                            | 9.6%                           |
| $A_{CP}(B_d \to \gamma \gamma)$            | 78%                            | 25%                            |
| $\operatorname{Br}(B_s \to \gamma \gamma)$ | 23%                            | _                              |

# <u>WARNING</u>: LHCb can also contribute to this mode! See <u>LHCb-PUB-2018-006</u>

| Observables                                                       | Belle $0.71 \mathrm{ab^{-1}}$ (B | Selle II $50  \mathrm{ab}^{-1}$ |
|-------------------------------------------------------------------|----------------------------------|---------------------------------|
| $\Delta_{0+}(B \to K^* \gamma)$                                   | 2.0%                             | 0.53%                           |
| $A_{CP}(B^0 \to K^{*0}\gamma)$                                    | 1.7%                             | 0.21%                           |
| $A_{CP}(B^+ \to K^{*+}\gamma)$                                    | 2.4%                             | 0.29%                           |
| $\Delta A_{CP}(B \to K^* \gamma)$                                 | 2.9%                             | 0.36%                           |
| $S_{K^{*0}\gamma}$                                                | 0.29                             | 0.030                           |
| $\text{Br}(B^0 \to \rho^0 \gamma)$                                | 24%                              | 4.5%                            |
| $Br(B^+ \to \rho^+ \gamma)$                                       | 30%                              | 5.0%                            |
| ${ m Br}(B^0 	o \omega \gamma)$                                   | 50%                              | 5.8%                            |
| $\Delta_{0+}(B \to \rho \gamma)$                                  | 18%                              | 1.9%                            |
| $A_{CP}(B^0 	o  ho^0 \gamma)$                                     | 44%                              | 3.8%                            |
| $A_{CP}(B^+ \to \rho^+ \gamma)$                                   | 30%                              | 3.0%                            |
| $A_{CP}(B^0 	o \omega \gamma)$                                    | 91%                              | 7.7%                            |
| $\Delta A_{CP}(B \to \rho \gamma)$                                | 53%                              | 4.8%                            |
| $S_{ ho^0\gamma}$                                                 | 0.63                             | 0.064                           |
| $ V_{td}/V_{ts} _{ ho/K^*}$                                       | 12%                              | 7.6%                            |
| $\text{Br}(B^0_s \to \phi \gamma)$                                | 23%                              |                                 |
| ${\rm Br}(B^0\to K^{*0}\gamma)/{\rm Br}(B^0_s\to\phi\gamma)$      | 23%                              | _                               |
| $\text{Br}(B^0_s \to K^{*0}\gamma)$                               | _                                |                                 |
| $A_{CP}(B^0_s \to K^{*0}\gamma)$                                  | _                                | _                               |
| ${\rm Br}(B^0_s \to K^{*0}\gamma)/{\rm Br}(B^0_s \to \phi\gamma)$ | _                                |                                 |
| ${\rm Br}(B^0\to K^{*0}\gamma)/{\rm Br}(B^0_s\to K^{*0}\gamma)$   |                                  |                                 |

# LHCb Upgrade II (see V. Gligorov and C. Langenbruch talks)

| LHCb                                     | 300 fb <sup>-1</sup> |                               |  |
|------------------------------------------|----------------------|-------------------------------|--|
|                                          | Yield                | $\sigma_{stat}(\gamma_{pol})$ |  |
| $B_{s}^{} \to \phi \gamma$               | 800k                 | 0.02                          |  |
| $B^0 \to K_S^{} \pi^+ \pi^- \gamma$      | 200k                 |                               |  |
| $B^{*} \to K^{*} \pi^{*} \pi^{-} \gamma$ | 2M                   | < 1%                          |  |
| $B^0 \rightarrow K^* e^+ e^-$            | 20k                  | 2%                            |  |
| $\Lambda_b \to \Lambda^0 \gamma$         | 10k                  | 4%                            |  |

Improvements in systematics needed but feasible:

- $\pi^0$  backgrounds
- angular background distributions
- detector asymmetries
- external inputs: BR, hadronisation



- Radiative b-decays provide important tests of the SM
  - NP very constrained already in  $C_7$  but still room in  $C_7'$

- Active field with fresh LHCb and Belle results:
  - first radiative b-baryon decay observed!
  - o new modes & techniques for photon polarisation measurements

### • Much more to come soon:

- LHCb full Run 2 analyses
- Belle II

mostly statistically dominated, work on systematics needed for inclusive measurements



- Radiative b-decays provide important tests of the SM
  - NP very constrained already in C but still room in C'

- Active field wit
  - first radiative

### new modes &

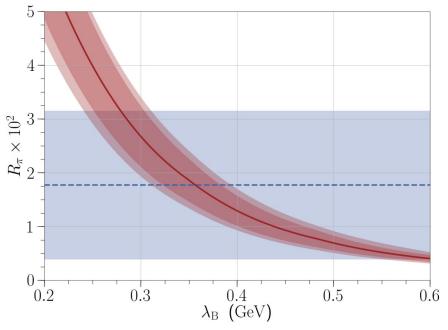
- Much more to come soon:
  - LHCb full Run 2 analyses
  - Belle II

mostly statistically dominated, work on systematics needed for inclusive measurements



# Search for $B^+ \rightarrow \ell \nu \gamma$ at Belle

Phys.Rev. D98 (2018) 11 112016 from M. Prim's talk at Moriond EW

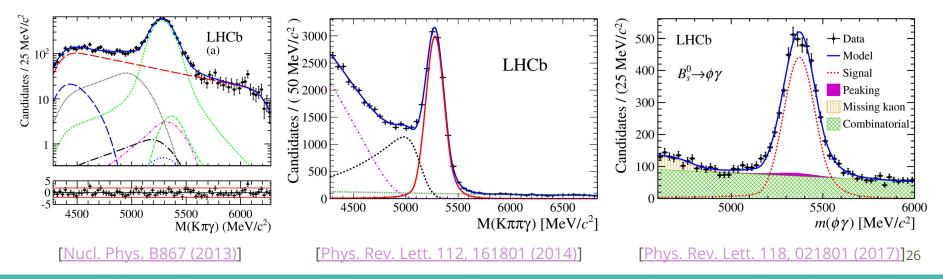

$$\frac{d\Gamma}{dE_{\gamma}} = \frac{\alpha_{em}G_{\rm F}^2 m_B^4 |V_{ub}|^2}{48\pi^2} x_{\gamma}^3 (1-x_{\gamma}) [F_A^2 + F_V^2]$$

$${f R}_{\pi}=rac{\Delta {\cal B}({f B}^+ o \ell^+ 
u_\ell \gamma)}{{\cal B}({f B}^+ o \pi^0 \ell^+ 
u_\ell)}=rac{\Delta {f \Gamma}(\lambda_{
m B})}{{f \Gamma}({f B}^+ o \pi^0 \ell^+ 
u_\ell)}$$

 $\textit{\textbf{R}}_{\pi}$  removes dependence of  $\textit{V}_{\mathrm{ub}}.$ 

$$\mathbf{R}_{\pi}^{ ext{measured}} = (\mathbf{1.7} \pm \mathbf{1.4}) imes \mathbf{10}^{-2}$$

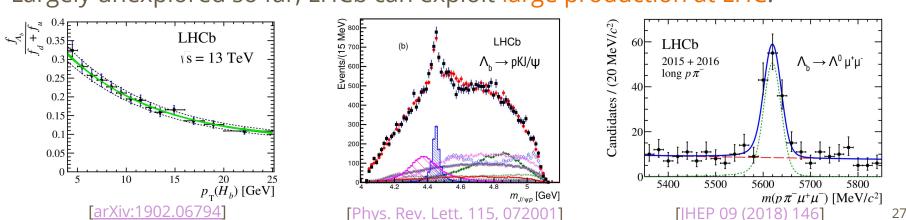
based on theoretical input from: Beneke et al., JHEP 07:154 (2018) HFLAV, Eur. Phys. J., C77:895, (2017)




#### $\lambda_{\rm B} > 0.24 \text{ GeV} \quad @ 90\% C.L.^{a}$

### **Radiative b-decays at LHCb**

Main challenges:


- mass resolution: ~100 MeV (~22 MeV for  $B \rightarrow hh$ )
- partial and mis-id backgrounds (bkg):  $\pi^0/\gamma$  separation



# **b-baryon decays**

Offer complementary observables to probe the SM:

- two spectator quarks  $\rightarrow$  different Form Factors
- half-integer spin  $\rightarrow$  richer angular distributions



Largely unexplored so far, LHCb can exploit large production at LHC:

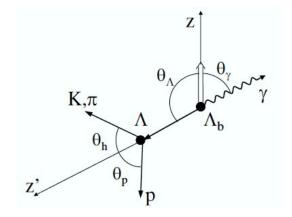
[Legger and Schietinger]

# Photon polarisation in $\Lambda_{\rm b} \rightarrow \Lambda^0 \gamma$

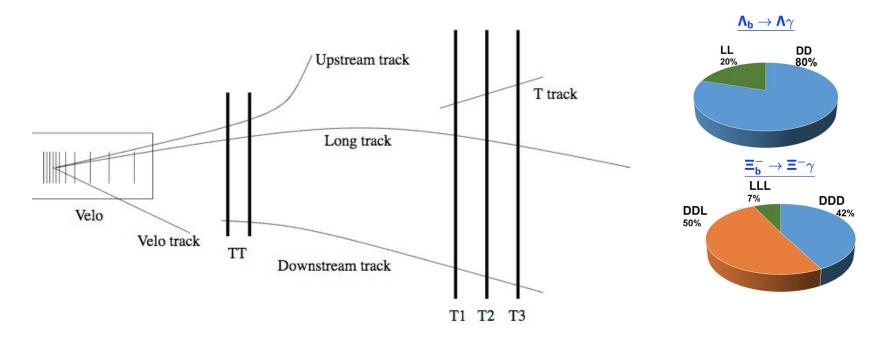
Most interesting observable is the photon polarisation:

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)}$$

at LO in the SM:


$$\alpha_{\gamma}^{LO} = \frac{1 - |r|^2}{1 + |r|^2} \qquad r = \frac{C'_{7}}{C_{7}} \sim \frac{m_s}{m_b}$$

Accessible in  $\Lambda_b \rightarrow \Lambda^0 \gamma$  through angular analysis:

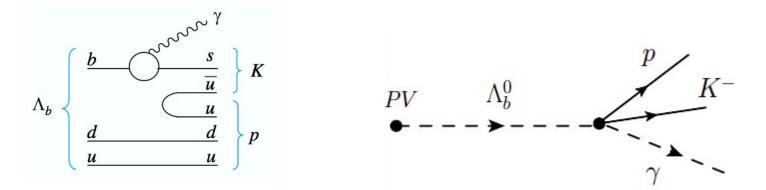

$$\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma} P_{\Lambda_b} \cos\theta_{\gamma}$$
$$\frac{d\Gamma}{d\cos\theta_p} \propto 1 - \alpha_{\gamma} \alpha_{p,1/2} \cos\theta_p$$

 $P_{\Lambda b} = (0.06 \pm 0.07)$ [Phys. Lett. B 724 (2013) 27]

$$\alpha_{p,1/2} = (0.642 \pm 0.013)$$
 [PDG]



# Track types at LHCb




### **Systematics**

|                 | Source                              | Value $(\%)$ |                             |
|-----------------|-------------------------------------|--------------|-----------------------------|
|                 | $B^0 \to K^{*0} \gamma$ backgrounds | 2.65         |                             |
|                 | Fit model                           | X            | affects signal significance |
|                 | $f_{\Lambda_b^0}/f_{B^0}$           | 8.7          | Significance                |
| LHCb unofficial | Input branching fractions           | 3.0          |                             |
|                 | Limited MC statistics               | 1.7          |                             |
|                 | Efficiency ratio                    | 0.72         |                             |
|                 | MC/Data                             | X            |                             |
|                 | Total                               | X            |                             |

 $\Lambda_b \rightarrow \Lambda^* \gamma$ 

Same b $\rightarrow$ sy transition with contributions from heavier  $\Lambda$ \* resonances



- experimentally more accessible:  $\Lambda^* \rightarrow pK$  strongly
  - prompt decay inside vertex detector
  - $\Lambda_{\rm b}$  vtx can be reconstructed

[Legger and Schietinger]

# Photon polarisation in $\Lambda_{b} \rightarrow pK\gamma$

•  $J = 1/2 \rightarrow$  angular distributions as for  $\Lambda^0$ 

$$\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma} P_{\Lambda_b} \cos\theta_{\gamma}$$
$$\frac{d\Gamma}{d\cos\theta_p} \propto 1 - \alpha_{\gamma} \alpha_{p,1/2} \cos\theta_p$$

in this case:

•  $\alpha_{p,\nu_2} = 0$  (strong decay) •  $P_{\Lambda b} = (0.06 \pm 0.07)$  at LHC

[Phys. Lett. B 724 (2013) 27]

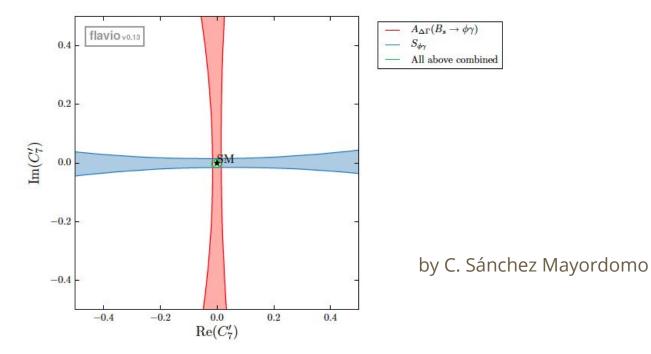
• J = 3/2

$$\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma,\frac{3}{2}} P_{\Lambda_b} \cos\theta_{\gamma}$$
$$\frac{d\Gamma}{d\cos\theta_p} \propto 1 - \alpha_{p,\frac{3}{2}} \cos^2\theta_p$$

with:

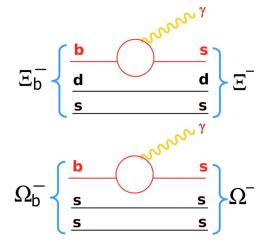
$$\alpha_{\gamma} = \frac{1}{2} \ \alpha_{\gamma,\frac{3}{2}} \left( 1 - \frac{3}{\alpha_{p,\frac{3}{2}}} \right)$$

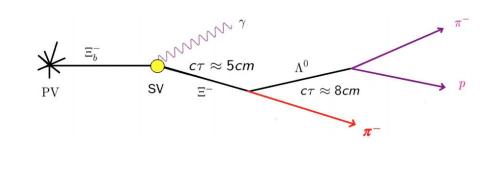
### sensitivity to $\boldsymbol{\alpha}_{_{\boldsymbol{V}}}$ suppressed by initial $\boldsymbol{\Lambda}_{_{\boldsymbol{b}}}$ polarisation


\*for J > 3/2, more helicity amplitudes than observables

### **Belle sum of exclusive**

| Mode ID  | Final state                             | Mode ID  | Final state                             |
|----------|-----------------------------------------|----------|-----------------------------------------|
| 1        | $K^+\pi^-$                              | 20       | $K^0_S \pi^+ \pi^0 \pi^0$               |
| 2        | $K_S^0 \pi^+$                           | 21       | $K^+\pi^+\pi^-\pi^0\pi^0$               |
| 3        | $K^+\pi^0$                              | 22*      | $K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ |
| 4*       | $K_S^0 \pi^0$                           | 23       | $K^+\eta$                               |
| 5        | $K^+\pi^+\pi^-$                         | 24*      | $K^0_S\eta$                             |
| 6*       | $K^0_S \pi^+ \pi^-$                     | 25       | $K^+\eta\pi^-$                          |
| 7        | $K^+\pi^-\pi^0$                         | 26       | $K_S^0\eta\pi^+$                        |
| 8        | $K_S^0 \pi^+ \pi^0$                     | 27       | $K^+\eta\pi^0$                          |
| 9        | $K^+\pi^+\pi^-\pi^-$                    | 28*      | $K^0_S\eta\pi^0$                        |
| 10       | $K_S^0 \pi^+ \pi^+ \pi^-$               | 29       | $K^+\eta\pi^+\pi^-$                     |
| 11       | $K^+\pi^+\pi^-\pi^0$                    | $30^{*}$ | $K^0_S\eta\pi^+\pi^-$                   |
| $12^{*}$ | $K^0_S \pi^+ \pi^- \pi^0$               | 31       | $K^+\eta\pi^-\pi^0$                     |
| 13       | $K^+\pi^+\pi^+\pi^-\pi^-$               | 32       | $K^0_S\eta\pi^+\pi^0$                   |
| $14^{*}$ | $K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$ | 33       | $K^+K^+K^-$                             |
| 15       | $K^+\pi^+\pi^-\pi^-\pi^0$               | $34^{*}$ | $K^+K^-K^0_S$                           |
| 16       | $K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$ | 35       | $K^+K^+K^-\pi^-$                        |
| 17       | $K^+\pi^0\pi^0$                         | 36       | $K^+K^-K^0_S\pi^+$                      |
| $18^{*}$ | $K^0_S \pi^0 \pi^0$                     | 37       | $K^+K^+K^-\pi^0$                        |
| 19       | $K^+\pi^-\pi^0\pi^0$                    | 38*      | $K^+K^-K^0_S\pi^0$                      |


### LHCb Upgrade for photon polarisation


An example with 300 fb<sup>-1</sup>  $\rightarrow \sigma(A^{\Delta}) \sim \sigma(S) \sim 0.05$ 



 $\Xi_{\rm b}^{-} \rightarrow \Xi^{-}\gamma$  and  $\Omega_{\rm b}^{-} \rightarrow \Omega^{-}\gamma$ 

Baryon b  $\rightarrow$  sy transitions with different spectator quarks





- More complex decay topology → very challenging reconstruction
  - most decays outside LHCb vertex locator
  - cannot reconstruct  $\Xi_{b}^{-}$  decay vertex