
in memories of Jame Stirling and Mike Pennington

Towards the Ultimate Precision in Flavour Physics

Photon polarisation of $b \rightarrow s \gamma$

Photon polarisation of $b \rightarrow s \gamma$ process

- The photon polarisation of the $b \rightarrow s \gamma$ process has an unique sensitivity to BSM with righthanded couplings.
- However, the photon polarisation has never
 been measured at a hight precision so far: an important challenge for LHCb (and its upgrade) and Belle II.

In SM

$$
\begin{aligned}
& t \quad \begin{array}{l}
\mathrm{b} \rightarrow \mathrm{~s} \gamma_{L} \text { (left-handed polarisation) } \\
\mathrm{b} \rightarrow \overline{\mathrm{~s}} \gamma_{R}(\text { right-handed polarisation) }
\end{array}
\end{aligned}
$$

How do we measure the polarisation?!

```
- Time dependent CP asymmetry
Atwood, Gronau, Soni PRL79
    \checkmark Bd}->\mp@subsup{K}{s}{}\mp@subsup{\pi}{}{0}\gamma,\mp@subsup{B}{d}{}->\rho\mp@subsup{\gamma}{(\mathrm{ Belle II) }}{<-Golden channel of Belle II
    \checkmark B
    \checkmark Bd}->\mp@subsup{K}{s}{}\phi\gamma,\mp@subsup{K}{s}{}\boldsymbol{\eta}\boldsymbol{\gamma
    \checkmark Bs}->\mp@subsup{K}{}{+}\mp@subsup{K}{}{-}\gamma(\mathrm{ (LHCb)
```

- Angular distribution (require more than 4 body final state) $\begin{gathered}\text { Kruger, Matias PRD7I } \\ \text { Becirevic, Schneider }\end{gathered}$
\checkmark Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+} \mathrm{l}^{-(\text {called }} \mathrm{A}_{T^{(2)}}, \mathrm{A}_{\left.T^{(i m)}\right)}^{(\mathrm{LHCb})}{ }^{\text {NPB854 }}$
$\checkmark \mathrm{B} \rightarrow \mathrm{K}_{\text {res }}(\rightarrow \mathrm{K} \Pi \Pi) \gamma\left(\right.$ called $\left.\lambda_{\gamma}\right)$ (Belle II/LHCB)
$\checkmark \Lambda_{b} \rightarrow \Lambda^{(*)} \gamma_{\text {(LHCb) }}$ $\begin{gathered}\text { Gronau et al PRL88 } \\ \text { E.K. Le Yaouanc,Tayduganov } \\ \text { PRD83 }\end{gathered}$
Gremm et al.'95, Mannel et
al '97, Legger et al '07,
Oliver et al ‘IO

For recent theoretical works, see S. de Boer \& G. Hiller, Eur.Phys.J. C78 (20I8) J. Gratrex, R. Zwicky arXiv: I 807.01643

How do we measure the polarisation?!

- Time dependent CP asymmetry
$\checkmark \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{0} \gamma, \mathrm{~B}_{\mathrm{d}} \rightarrow \rho \gamma$ (Belle ll)
$\checkmark B_{d} \rightarrow K_{s} \pi^{+} \pi{ }^{-} \gamma$ (Belle II)
$\checkmark B_{d} \rightarrow K_{s} \phi \gamma, K_{s} \eta \gamma$
$\checkmark B_{s} \rightarrow K^{+} K^{-} \gamma$ (LHCb)
- Angular distribution (require more than 4 body final state)
\checkmark Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+}+$-(called $\mathrm{A}_{T^{(2)}}, \mathrm{A}_{\left.T^{(i m)}\right)}{ }^{(L H C b)}$
$\checkmark B \rightarrow K_{\text {res }}\left(\rightarrow\right.$ K \quad Tm) $\gamma\left(\right.$ called $\left.\lambda_{Y}\right)$ (Belle II/LHCB)
$\checkmark \Lambda_{b} \rightarrow \Lambda^{(*)} \gamma($ LHCb)
new Martin et.al. arXiv: I 902.04870
Lo $\quad \Lambda_{b}$ turned out to be un-polarised in LHCb
\& Possibility in Ξ_{-}^{-}?

How do we measure the polarisation?!

- Time dependent CP asymmetry
$\checkmark \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{0} \gamma, \mathrm{~B}_{\mathrm{d}} \rightarrow \rho \gamma_{\text {(Belle II) }}$
$\sqrt{B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma}$ (Belle III)
$\checkmark B_{d} \rightarrow K_{s} \phi \gamma, K_{s} \eta \gamma$
$\checkmark \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \gamma^{\boldsymbol{\gamma}}$ (LHCb)
- Angular distribution (require more than 4 body final state)
\checkmark Transverse asymmetry in $\left.\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}\right|^{+} \mathrm{I}^{-(\text {called }} \mathrm{A}_{T^{(2)}}{ }^{(2)} \mathrm{A}_{T^{(i m)}}{ }^{(\mathrm{L}}\right)$ (LHCb)
$\checkmark B \rightarrow K_{\text {res }}(\rightarrow K \pi \pi) \gamma$ (called λ_{i}) (Belle II/LHCB)
$\checkmark \Lambda_{b} \rightarrow \Lambda^{(*)} \gamma($ LHCb)
new
V. Bellee et.al. arXiv: I 902.0920
S.Akar et.al. arXiv:I802.09433

Challenges to resolve $\mathrm{K}_{1} \rightarrow \mathrm{~K} \pi \pi$ system
New observable in TDCPV

Current status on the constraint on the right-handed contribution

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\prime \mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

We have a constraint from inclusive branching ratio measurement:

$$
B r\left(B \rightarrow X_{S \gamma}\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}
$$

While the polarization measurement carries information on

$$
\frac{\mathcal{M}_{R}}{\mathcal{M}_{L}} \simeq \frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}}
$$

A.Tayduganov et al. JHEP I208

Prospect...

Method I
Expected constraint from $\mathrm{S}_{\mathrm{Ks} \mathrm{\pi r}}$ measurement with 2% precision

Current bound $S_{K s \pi^{0}}{ }^{0}=-0.15 \pm 0.2$

Method III
Expected constraint from λ

Method II
Expected constraint from
$A_{T}{ }^{(2)}, A_{T}{ }^{(i m)}$ measurement with 10% precision

It turned out that Method I with $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \gamma$ gives similar constraints.
$\mathrm{C}^{\prime}{ }_{7 \gamma}{ }^{\mathrm{NP}} \neq \mathrm{O}, C_{7 \gamma}{ }^{\mathrm{NP}}=0$
Becirevic, EK, Le Yaouanc, Tayduganov JHEP I 208

Recent progresses on the baryonic mode

Measuring photon polarisation with Λ_{b} decay

$$
\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta_{\Lambda^{(*)}}} \propto 1-\alpha_{\Lambda^{(*)}} P_{\Lambda_{b}} \cos \theta_{p} \cos \theta_{\Lambda^{(*)}}-\alpha_{\gamma} \alpha_{\Lambda^{(*)}} \cos \theta_{p}-\alpha_{\gamma} P_{\Lambda_{b}} \cos \theta_{\Lambda^{(*)}}
$$

\wedge^{*} spin $1 / 2$ example
α_{γ} : photon polarisation, related to C_{7}^{\prime} / C_{7}
$\alpha_{\Lambda^{(*)}}: \Lambda^{(*)}, \alpha_{\Lambda}=0.642 \pm 0.013$
$P_{\Lambda_{b}}: \Lambda_{b}$ polarisation

$$
\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta_{\Lambda}} \propto 1-\alpha_{\gamma} P_{\Lambda_{b}} \cos \theta_{\Lambda}
$$

Weak decay followed by Strong decay \rightarrow need non-zero polarisation of Λ_{b}

$$
\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta_{\Lambda}} \propto 1-\alpha_{\gamma} \alpha_{\Lambda} \cos \theta_{p}
$$

Weak decay followed by Weak decay \rightarrow works with zero polarisation of Λ_{b}

Measuring photon polarisation with Λ_{b} decay

$\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta_{\Lambda^{(*)}}} \propto 1-\alpha_{\Lambda^{(*)}} P_{\Lambda_{b}} \cos \theta_{p} \cos \theta_{\Lambda^{(*)}}-\alpha_{\gamma} \alpha_{\Lambda^{(*)}} \cos \theta_{p}-\alpha_{\gamma} P_{\Lambda_{b}} \cos \theta_{\Lambda^{(*)}}$
Λ^{*} spin $1 / 2$ example
α_{γ} : photon polarisation, related to C_{7}^{\prime} / C_{7}

$$
\begin{equation*}
\alpha_{\Lambda^{(*)}}: \Lambda^{(*)}, \alpha_{\Lambda}=0.642 \pm 0.013 \tag{‘'I3}
\end{equation*}
$$

$P_{\Lambda_{b}}: \Lambda_{b}$ polarisation
LHCb found $P_{A_{b}}$ is "small" :

$$
(0.06 \pm 0.07 \pm 0.02)
$$

$$
\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta^{\prime}}
$$

Weak decay followed by Strong decay \rightarrow need non-zero polarisation of Λ_{b}

$$
\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos }
$$

A life time is very long and challenging to detect it experimentally.

Weak decay followed by Weak decay \rightarrow works with zero polarisation of Λ_{b}

Measuring photon polarisation with Λ_{b} decay

$\frac{1}{N} \frac{d N}{d \cos \theta_{p} d \cos \theta_{\Lambda^{(*)}}} \propto 1-\alpha_{\Lambda^{(*)}} P_{\Lambda_{b}} \cos \theta_{p} \cos \theta_{\Lambda^{(*)}}-\alpha_{\gamma} \alpha_{\Lambda^{(*)}} \cos \theta_{p}-\alpha_{\gamma} P_{\Lambda_{b}} \cos \theta_{\Lambda^{(*}}$
\wedge^{*} spin $1 / 2$ example
Martin et.al. arXiv: I 902.04870, see also talk by C. Benito
LHCb observed $\Lambda_{b} \rightarrow \boldsymbol{\mu} \rightarrow(p \pi) \gamma:(65 \pm 13)$ events ($1 \mathrm{fb}^{-1}$ data)!
S Sensitivity to $\alpha \wedge$ is 15% at Run II (with ${ }^{\sim} 10^{3}$ events)
L Idea of using $\Xi^{-} \rightarrow \Xi^{-} \gamma \rightarrow\left(\Lambda \pi^{-}\right) \gamma$ examined:

- ${ }^{\sim} 1 / 15$ suppressed production rate
- but similar sensitivity for $\alpha \equiv, 20 \%$, possible
* Can't we produce polarised Λ_{b} ?

Are there other b baryons which make tracks?
Q Roles of azimuthal angles?
Symmetry relations to remove $P_{\Lambda_{b}}$ dependence?
\& How about Λ_{c} radiative days?

Angular analysis of $B \rightarrow K_{\text {res }} \gamma \rightarrow(K \pi \pi) \gamma$

Angular distribution method

Gronau, Grossman, Pirjol, Ryd PRL88('O I)

Photon polarisation = Recoiling K1 polarisation
 \rightarrow measure it from Kres decay angular distribution

$\lambda_{\gamma}: \begin{aligned} & \text { Polarisation parameter } \\ & \text { related to } \mathrm{C}, \mathrm{C} 7 \text { ' etc }\end{aligned}$

3 body decay
necessary necessary

Example of $\mathrm{K}_{1}{ }^{+}(1270,1400) \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$

We need to know the angular distribution of $\mathrm{K}_{\text {res }}$ in advance

K1 \rightarrow Kாா decay amplitude

$$
\overrightarrow{\mathcal{J}}\left(s, s_{13}, s_{23}\right)=C_{1}\left(s, s_{13}, s_{23}\right) \vec{p}_{1}-C_{2}\left(s, s_{13}, s_{23}\right) \vec{p}_{2}
$$

$$
K_{1}^{+}(1270 / 1400) \rightarrow \underbrace{\pi^{-}\left(p_{1}\right) \pi^{+}}_{K^{* 0}}\left(p_{2}\right) K^{+}\left(p_{3}\right) \quad \text { Main 2 isobars } \quad \text { Kl->[pK, K*T]->K } \pi \pi m
$$

Angular distributions
$\mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta, \phi\right) \propto 2 a-\left(a+a_{1} \cos 2 \phi+a_{2} \sin 2 \phi\right) \sin ^{2} \theta+\lambda_{\gamma} b \cos \theta$

$$
\begin{array}{rlr}
a\left(s, s_{13}, s_{23}\right) & =\left|C_{1}\right|^{2}\left|\vec{p}_{1}\right|^{2}+\left|C_{2}\right|^{2}\left|\vec{p}_{2}\right|^{2}-\operatorname{Re}\left[C_{1} C_{2}^{*}\right] \vec{p}_{1} \cdot \vec{p}_{2} \\
a_{1}\left(s, s_{13}, s_{23}\right) & =\left(\left|C_{1}\right|^{2}\left|\frac{\left|\vec{p}_{1}\right|}{\left|\vec{p}_{2}\right|}+\left|C_{2}\right|^{2}\right| \frac{\left|\vec{p}_{2}\right|}{\left|\vec{p}_{1}\right|}\right) \overrightarrow{p_{1}} \cdot \vec{p}_{2}-\operatorname{Re}\left[C_{1} C_{2}^{*}\right] \vec{p}_{1} \cdot \vec{p}_{2} \\
a_{2}\left(s, s_{13}, s_{23}\right) & =\left(\left|C_{1}\right|^{2}\left|\frac{\left|\vec{p}_{1}\right|}{\left|\vec{p}_{2}\right|}-\left|C_{2}\right|^{2}\right| \frac{\left|\overrightarrow{p_{2}}\right|}{\left|\vec{p}_{1}\right|}\right) \vec{p}_{1} \times \vec{p}_{2} & \text { Imagir } \\
b\left(s, s_{13}, s_{23}\right) & =-4 \operatorname{lm}\left[C_{1} C_{2}^{*} \mid \vec{p}_{1} \times \vec{p}_{2}\right] & \text { meas is ne }
\end{array}
$$

Imaginary part is needed to measure λ_{y}

Up-down asymmetry for $\mathrm{K}_{1}{ }^{+}(1270,1400)$

Example of K1 (ϕ angle integrated)
Gronau, Grossman, Pirjol, Ryd PRL88('OI)

$$
\mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) \propto a\left(s, s_{13}, s_{23}\right)\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} b\left(s, s_{13}, s_{23}\right) \cos \theta
$$

Up-down asymmetry

$$
\begin{aligned}
\mathcal{A}_{U D} & \equiv \frac{\int_{0}^{1} \mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) d \cos \theta-\int_{-1}^{0} \mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) d \cos \theta}{\int_{-1}^{1} \mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) d \cos \theta} \\
& =\lambda_{\gamma} \frac{3}{8} \frac{b\left(s, s_{13}, s_{23}\right)}{a\left(s, s_{13}, s_{23}\right)}
\end{aligned}
$$

» To measure λ_{y}, we need to know the factor b / a » Non-zero b requires imaginary part
» Source of imaginary part: Breit-Wigner of isobars as well as K_{1} 's

Theory prediction for up-down asymmetry

$K 1 \rightarrow K \pi \pi$ is studied in detail at ACMMOR experiment
Using the fitted parameters, we can predict $A_{u d} / \lambda_{Y}$ for K1(1270) and K1(1400)
Daum et al, Nucl Phys, BI87 ('8I), A.Tayduganov, EK, Le Yaouanc PRD ‘I3

Recently, the result is shown for D decay (but it is the same for B decay)
N. Adolph, G. Hiller, A. Tayduganov I8I 2.04679

Previous experiments indicate small $\mathrm{Kl}(1400)$ but the ration has to be measured.

Origin of the up-down asymmetry

N.Adolph et.al I8I2.04679

Non-zero asymmetry requires an interference of resonances.
$\checkmark K 1(1270)$ decays through both $\left[\rho K, K^{*} \pi\right]$ isobars.
$\checkmark K 1(1400)$ decays through mostly $\left[K^{*} \pi\right]$ isobar.

$$
K_{1}^{+}(1270 / 1400) \rightarrow \underbrace{\pi_{\rho^{0}}^{-}\left(p_{1}\right) \pi^{+}}_{K^{* 0}}\left(p_{2}\right) K^{+}\left(p_{3}\right)
$$

We see both $\left[\rho K, K^{*} \pi\right]$

K1(1400) Dalitz

We almost only see $K^{*} \pi$

Combining with neutral modes

» LHCb has a large data sample for $\mathrm{B}^{+} \rightarrow \mathrm{K}_{1}{ }^{+} Y \rightarrow \mathrm{~K}^{+} \pi^{+} \pi \gamma$
» But for final states with neutral particle, Belle (II) is better! » In general, $B r, A^{U D}$ are larger for neutral modes.

Babar'05
TABLE I: Results of the fit for $B \rightarrow K \pi \pi \gamma$, for $m_{K \pi \pi}<$ $1.8 \mathrm{GeV} / c^{2}$. The first error is statistical, the second systematic. The yields do not include the channel crossfeeds, which are included in the fit to obtain the branching fractions.

	Channel	Yield	Branching Fraction (10-5)
II	$K^{+} \pi^{-} \pi^{+} \gamma$	899 ± 38	$2.95 \pm 0.13 \pm 0.20$
III	$K^{+} \pi^{-} \pi^{0} \gamma$	572 ± 31	$4.07 \pm 0.22 \pm 0.31$
IV	$K^{0} \pi^{+} \pi^{-} \gamma$	176 ± 20	$1.85 \pm 0.21 \pm 0.12$
I	$K^{0} \pi^{+} \pi^{0} \gamma$	164 ± 15	$4.56 \pm 0.42 \pm 0.31$
adding each $\pi 0$: loss of efficiency \times 0.4-0.5 adding each KO: loss of efficiency $\times 0.25$			

Up-down asymmetry for $K_{1}{ }^{0}(1270,1400) \rightarrow K^{+} \pi^{0} \pi^{-}$

$\checkmark K 1(1270)$ decays through both [$\left.\mathrm{NK}, 2 \mathrm{~K}^{*} \pi\right]$ isobars. \checkmark Kl(1400) decays through mostly $\left[2 \mathrm{~K}^{*} \pi\right]$ isobar.

$$
K_{1}^{0}(1270 / 1400) \rightarrow \underbrace{\pi^{\rho^{-}}\left(p_{1}\right) \pi^{-}}_{K^{*+}} \stackrel{K^{* 0}}{\left(p_{2}\right) K^{\prime}}+\left(p_{3}\right)
$$

We see both $\left[\rho K, 2 K^{*} \pi\right]$

K1(1400) Dalitz

We see almost only $2 K^{*} \pi$

Up-down asymmetry for $K_{1}{ }^{0}(1270,1400) \rightarrow K^{+} \pi^{0} \pi^{-}$

- Gaining sensitivity to photon polarisation (neutral mode $\mathrm{x}^{\sim} 2$)
- Isospin relation provides extra information to constraint hadronic parameters

We see both $\left[\rho K, 2 K^{*} \pi\right]$

We see almost only $2 \mathrm{~K}^{*} \pi$

LHCb result on up-down asymmetry

LHCb PRL ('। 4)

LHCb result on up-down asymmetry

LHCb PRL ('। 4)

Interpreting this result needs theory models

LHCb result on up-down asymmetry

LHCb PRL ('I 4)

Generator for $K_{\text {res }} \rightarrow K \Pi \pi$ decays

see also M. Gronau, D. Pirjol, Phys.Rev. D96 (2017)

1. $K 1_{1270}(1+) \& K 1_{1400}(1+)$ decays based on quark model
A.Tayduganov, EK, Le Yaouanc PRD ‘I3

Assume $K_{1} \rightarrow K \pi \pi$ comes from quasi-two-body decay, e.g. $K_{1} \rightarrow K^{*} \pi, K_{1} \rightarrow \rho K$, then, J function can be written in terms of:

14 form factors (S,D partial wave amplitudes)
2. $\mathrm{K}^{*}{ }_{1410,1680}(1-)$ and $\mathrm{K} 2_{1430}(2+) \quad$ A. Kotenko, B. Knysh talk at Lausanne WS '/7

Lesser parameters

- Known to decay mainly $K_{\text {res }} \rightarrow K^{*} \pi$, ρK
- Only 1 form factor for each resonance

On total 10 complex couplings needed (20 real number)!

Generator for $\mathrm{K}_{\text {res }} \rightarrow \mathrm{K} \pi \pi$ decays...

$$
\begin{aligned}
& \mathcal{W}^{K_{1}}\left(s, s_{13}, s_{23}, \theta, \phi\right)=-A_{1}^{K_{1}}\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} B^{K_{1}} \cos \theta \\
& +\left(A_{2}^{K_{1}} \cos 2 \phi+A_{3}^{K_{1}} \sin 2 \phi\right) \sin ^{2} \theta \\
& \mathcal{W}^{K^{*}}\left(s, s_{13}, s_{23}, \theta, \phi\right)=A^{K^{*}} \sin ^{2} \theta \\
& \mathcal{W}^{K_{2}}\left(s, s_{13}, s_{23}, \theta, \phi\right)=A^{K_{2}}+\lambda_{\gamma} B^{K_{2}} \cos \theta \\
& +C_{1}^{K_{2}} \sin ^{2} \theta+D_{1}^{K_{2}} \sin ^{4} \theta+\lambda_{\gamma} E^{K_{2}} \sin ^{2} \theta \cos \theta \\
& +\left(C_{0}^{K_{2}} \sin ^{2} \theta+D_{0}^{K_{2}} \sin ^{4} \theta\right) \cos 2 \phi \\
& \mathcal{W}^{K_{1} K^{*}}\left(s, s_{13}, s_{23}, \theta, \phi\right)=A^{K_{1} K^{*}}+\lambda_{\gamma} E^{K_{1} K^{*}} \cos \theta+D_{1}^{K_{1} K^{*}} \sin ^{2} \theta \\
& +\left(B_{1}^{K_{1} K^{*}} \sin \phi+B_{2}^{K_{1} K^{*}} \cos \phi\right) \sin \theta \\
& +\lambda_{\gamma}\left(C_{1}^{K_{1} K^{*}} \sin \phi+C_{2}^{K_{1} K^{*}} \cos \phi\right) \sin \theta \cos \theta \\
& +\left(D_{2}^{K_{1} K^{*}} \cos 2 \phi+D_{3}^{K_{1} K^{*}} \sin 2 \phi\right) \sin ^{2} \theta \\
& \mathcal{W}^{K_{1} K_{2}}\left(s, s_{13}, s_{23}, \theta, \phi\right)=A_{1}^{K_{1} K_{2}}+\lambda_{\gamma} A_{2}^{K_{1} K_{2}} \cos \theta \\
& +B_{1}^{K_{1} K_{2}} \sin ^{2} \theta+\lambda_{\gamma} C_{1}^{K_{1} K_{2}} \sin ^{2} \theta \cos \theta+D_{1}^{K_{1} K_{2}} \sin \quad \sigma \\
& +\left(B_{2}^{K_{1} K_{2}} \cos 2 \phi+B_{3}^{K_{1} K_{2}} \sin 2 \phi\right) \sin ^{2} \theta+ \\
& +\lambda_{\gamma}\left(C_{2}^{K_{1} K_{2}} \sin \phi+\mathcal{W}^{K_{2} K^{*}}\left(s_{13}, s_{23}, \theta, \phi\right)=A_{1}^{K_{2} K^{*}}+\lambda_{\gamma} A_{2}^{K_{2} K^{*}} \cos \theta+\right. \\
& +D_{2}^{K_{1} K_{2}} \cos 2 \phi \sin ^{4} \quad+B_{1}^{K_{2} K^{*}} \sin ^{2} \theta+C_{1}^{K_{2} K^{*}} \sin ^{4} \theta+\lambda_{\gamma} D^{K_{2} K^{*}} \sin ^{2} \theta \cos \theta \\
& +\left(B_{2}^{K_{2} K^{*}} \sin ^{2} \theta+C_{2}^{K_{2} K^{*}} \sin ^{4} \theta\right) \cos 2 \phi \\
& +\lambda_{\gamma}\left(E_{1}^{K_{2} K^{*}} \sin \phi+E_{2}^{K_{2} K^{*}} \cos \phi\right) \sin \theta \cos \theta \\
& +\left(F_{1}^{K_{2} K^{*}} \sin \phi+F_{2}^{K_{2} K^{*}} \cos \phi\right) \cos 2 \theta \sin \theta \\
& \text { A. Kotenko, B. Knysh E.K. talk at Lausanne WS 'I } 7 \\
& \text { "Form-Factor" method } \\
& K_{1}^{1270}: A_{1} \cdot \sin (2 \phi)+B_{1} \cdot \cos (2 \phi)
\end{aligned}
$$

$K^{+} \pi^{+} \pi^{-}$and $K^{0} \pi^{-} \pi^{+}$
The functions, $A_{i}^{K_{r} e s}, B_{i}^{K_{r} e s}, C_{i}^{K_{r} e s}$
, are the functions of the Dalitz variables

Generator for $\mathrm{K}_{\text {res }} \rightarrow \mathrm{K} \Pi \pi$ decays

$$
\begin{gathered}
\mathcal{A}_{\mathrm{R}}^{k}(\boldsymbol{x})=B_{L_{B}}\left(q_{B}(\boldsymbol{x}), 0\right) \mathcal{T}_{i}^{k}(\boldsymbol{x}) \mathcal{T}_{j}^{k}(\boldsymbol{x}) \mathcal{S}_{i j ; \mathrm{R}}^{k}(\boldsymbol{x}), \\
\mathcal{A}_{\mathrm{L}}^{k}(\boldsymbol{x})=P_{i}(-1)^{J_{i}-1} B_{L_{B}}\left(q_{B}(\boldsymbol{x}), 0\right) \mathcal{T}_{i}^{k}(\boldsymbol{x}) \mathcal{T}_{j}^{k}(\boldsymbol{x}) \mathcal{S}_{i j, \mathrm{~L}}^{k}(\boldsymbol{x})
\end{gathered}
$$

Applied by BESIII \& LHCb e.g. to D->Kாmा mode arXiv:1903.06316
D->Kாnா mode EPJC 78
$B->J / \psi K \pi \pi$ mode Thesis by D^{\prime} argent

$$
\mathcal{T}(s, q, L)=\frac{\sqrt{c} B_{L}(q, 0)}{m_{0}^{2}-s-i m_{0} \Gamma(s, q, L)} \quad \mathcal{S}^{i j, m_{\gamma}}=\sum_{m_{i}, m_{j}}\left\langle P_{2} P_{3}\right| \mathcal{M}\left|R_{j}\left(m_{j}\right)\right\rangle\left\langle R_{j}\left(m_{j}\right) P_{1}\right| \mathcal{M}\left|R_{i}\left(m_{i}\right)\right\rangle\left\langle R_{i}\left(m_{i}\right) \gamma\left(m_{\gamma}\right)\right| \mathcal{M}|B\rangle .
$$

Decay chain	Spin factor
$B \rightarrow A \gamma, A \rightarrow V P_{1}, V \rightarrow P_{2} P_{3}$	$\epsilon_{\alpha}^{*}(\gamma) P_{(1)}^{\alpha \beta}(A) L_{(1) \beta}(V)$
$B \rightarrow A \gamma, A[D] \rightarrow V P_{1}, V \rightarrow P_{2} P_{3}$	$\epsilon_{\alpha}^{*}(\gamma) L_{(2)}^{\alpha \beta}(A) L_{(1) \beta}(V)$
$B \rightarrow A \gamma, A \rightarrow S P_{1}, S \rightarrow P_{2} P_{3}$	$\epsilon^{* \alpha}(\gamma) L_{(1) \alpha}(A)$
$B \rightarrow V_{1} \gamma, V_{1} \rightarrow V_{2} P_{1}, V_{2} \rightarrow P_{2} P_{3}$	$\epsilon_{\alpha}^{*}(\gamma) P_{(1)}^{\alpha \kappa}\left(V_{1}\right) \epsilon_{\kappa \lambda \mu \nu} L_{(1)}^{\lambda}\left(V_{1}\right) u_{V_{1}}^{\mu} P_{(1)}^{\nu \xi}\left(V_{1}\right) L_{(1) \xi}\left(V_{2}\right)$
$B \rightarrow T_{-} \gamma, T_{-} \rightarrow V P_{1}, V \rightarrow P_{2} P_{3}$	$L_{(1) \alpha}(B) \epsilon_{\beta}^{*}(\gamma) P_{(2)}^{\alpha \beta \lambda \mu}\left(T_{-}\right) L_{(1) \lambda}\left(T_{-}\right) P_{(1) \mu \nu}\left(T_{-}\right) L_{(1)}^{\nu}(V)$
$B \rightarrow T_{-} \gamma, T_{-} \rightarrow S P_{1}, S \rightarrow P_{2} P_{3}$	$L_{(1) \alpha}(B) \epsilon_{\beta}^{*}(\gamma) L_{(2)}^{\alpha \beta}\left(T_{-}\right)$
$B \rightarrow T_{+} \gamma, T_{+} \rightarrow V P_{1}, V \rightarrow P_{2} P_{3}$	$\epsilon_{\kappa \lambda \mu \nu}^{\kappa} u_{T_{+}}^{\kappa} L_{(1) \alpha}(B) \epsilon_{\beta}^{*}(\gamma) P_{(2)}^{\alpha \beta \lambda \xi}\left(T_{+}\right) L_{(2) \xi}^{\mu}\left(T_{+}\right) P_{(1)}^{\nu \rho}\left(T_{+}\right) L_{(1) \rho}(V)$

Up-down asymmetry $\mathcal{A}_{u d}$ for simulated samples of $B^{+} \rightarrow K_{1}(1270)^{+} \gamma$ decays governed by two amplitudes only, $K_{1}(1270)^{+} \rightarrow K^{+} \rho(770)^{0}$ and $K_{1}(1270)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$, shown as a function of the generated ratio of fractions (radial coordinate, from 0.1 to 9.0) and phase difference between the two amplitudes (polar coordinate).

Generator for $K_{r e s} \rightarrow K \pi \pi$ decays...

I MINTII vs Gampola comparison is going well (Second workshop next week).

IV Now that the generator is ready, we can start the full angular and Dalitz variable fit (5 dimensional fit) to determine simultaneously photon polarisation and hadronic parameters.

I This will improve significantly the sensitivity to the photon polarisation.
(V) The generators can be extended to apply to the other processes including kaonic resonances (e.g. tau-> K pi pi nu).

Time dependent analysis of $B \rightarrow K_{\text {res }} \gamma \rightarrow(K \pi \pi) \gamma$

Time dependent CPV method

Atwood, Gronau, Soni, PRL 79 (I997)
Atwood, Gershon, Hazumi, Soni, PRD7I (2005)

- In $\mathrm{SM} C_{7}^{\prime}$ is negligibly small, so the interference does not occur (no CPV). - Thus, observation of CPV is a signal beyond the SM.

Time dependent CPV method
$K s T^{+} T^{-} \gamma_{L} \quad$ Atwood, Gronau, Soni, PRL 79 (I997)

$B_{d}(t=0)$
@KSYL
$q / p f-(t)$

C_{7}

Atwood, Gershon, Hazumi, Soni, PRD7I (2005)

- One can do the same study using $B \rightarrow \rho K s_{\gamma L}$ channel (CP eigenstate) with final state $K s \pi^{+} \pi^{-} \gamma_{L}$.

Time dependent CPV method

KsTT ${ }^{+} \mathbf{T T}^{-} \gamma_{\mathrm{L}}$ Atwood, Gronau, Soni, PRL 79 (I997)

Time dependent CPV formula

Time dependent CPV (measurable)

Dilution factor to be extracted from the resonance study (angular analysis)

$$
\text { Belle: Phys.Rev.Lett. } 101 \text { (2008), Babar: Phys.Rev. D93 (2016) }
$$

- Note: a null-test can be performed without dilution factor (i.e. $\mathrm{S}_{\mathrm{ks} \pi+\pi-\gamma} \neq 0$ is immediately a discovery of new physics!)

Time dependent analysis $B_{d} \rightarrow K_{s} \pi^{0} \gamma$ vs $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$

S. Akar, E. Ben-Haim, J. Hebinger, E.K. F.Yu arXiv: I 802.09433

Red: Belle II golden channel $B_{d} \rightarrow K_{s} \pi^{0} \gamma$ Green: LHCb B->K*ee angular analysis

Time dependent analysis $B_{d} \rightarrow K_{s} \pi^{0} \gamma$ vs $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$

S. Akar, E. Ben-Haim, J. Hebinger, E.K. F.Yu arXiv:I 802.09433

Blue: Belle II $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}_{s} \pi^{+} \pi^{-} \gamma$ (without Dalitz information) Green: LHCb B->K*ee angular analysis

$B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma:$ new observable!

S. Akar, E. Ben-Haim, J. Hebinger, E.K. F.Yu

$B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$: new observable!

S. Akar, E. Ben-Haim, J. Hebinger, E.K. F.Yu

=D: dilution factor

Similar to the GGSZ method, PRD68 (2003)

For example,

- measure the CPV parameter $S_{k S_{\pi+\pi}-\gamma}$ for upper $\left(S^{I}\right)$ and lower $\left(S^{\bar{I}}\right)$ part of Dalitz plane separately.
- then, we can compose two observables:

$$
\begin{aligned}
\mathcal{S}^{+} & \equiv \mathcal{S}_{\pi^{+} \pi^{-} K_{S}^{0} \gamma}^{I}+\mathcal{S}_{\pi^{+} \pi^{-} K_{S}^{0} \gamma}^{\bar{I}} \\
\mathcal{S}^{-} & \equiv \mathcal{S}_{\pi^{+} \pi^{-} K_{S}^{0} \gamma}^{I}-\mathcal{S}_{\pi^{+} \pi^{-} K_{S}^{0} \gamma}^{\bar{I}}
\end{aligned}
$$

For model independent analysis, see Le Yaouanc, A.Tayduganov, EK, PLB '16

$B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$: new observable!

S. Akar, E. Ben-Haim, J. Hebinger, E.K. F.Yu arXiv:I 802.09433

> Purple : in case $\operatorname{Re}[D]>\operatorname{Im}[D]$
> Green: in case $\operatorname{Re}[D]$ < $\operatorname{Im}[D]$
> Red: in case $\operatorname{Re}[D]=\operatorname{Im}[D]$

Conclusions

- There have been many progresses in photon polarisation determination of the $b \rightarrow s \gamma$ process.
- $B \rightarrow K \pi \pi r$ channel is motivated by its large data sample. Also $B \rightarrow K \pi \pi \gamma$ is the simplest possible channel for angular analysis.
- The angular analysis method determines the photon polarisation by measuring the Kaonic resonance polarization. Thus, the challenge is to understand the $K_{\text {res }} \rightarrow K \pi \pi$ decays very precisely.
- Simultaneous fit of angles and Dalitz variables is crucial and a lot of efforts are put in such works by LHCb/ Belle/BelleII.
- For the time dependent analysis, $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$ channel requires an extraction of the dilution factor D, which is the challenges for this channel (though it can be obtained as a byproduct of the angular analysis).
- We showed that $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-} \gamma$ has an advantage compared to $B_{d} \rightarrow K_{s} \pi^{0} \gamma$ (golden-)channel since the Dalitz distribution can provide extra information, which provides more information, such as both the real/imaginary parts of the C7'/C7.

Backup

Right-handed: which NP model?

What types of new physics models? For example, models with right-handed neutrino, or custodial symmetry in general induces the right handed current.


```
Left-Right symmetric model ( \(W_{R}\) )
```

Blanke et al. JHEP1203

```
SUSY GUT model \deltaRR
    mass insertion
```

Girrbach et al. JHEP1106

Which flavour structure?

The models that contain new particles which change the chirality inside of the $b \rightarrow s \gamma$ loop can induce a large chiral enhancement!

NP signal beyond the constraints from Bs oscillation parameters possible.

```
```

Left-Right symmetric

```
```

Left-Right symmetric
model: mt/mb

```
```

 model: mt/mb
    ```
```

Cho, Misiak, PRD49, '94
Babu et al PLB333 '94

SUSY with $\delta_{\text {RL }}$ mass insertions: msusy/mb

Gabbiani, et al. NPB477 '96
Ball, EK, Khalil, PRD69 ‘04

Model independent analysis

Use of B->J/psi Kாா channel

Le Yaouanc, A. Tayduganov, EK, PLB ‘/6

$$
\begin{aligned}
& \mathcal{W}^{V}\left(s_{13}, s_{23}, \cos \theta, \phi\right)_{s} \equiv a^{V}+\left(a_{1}^{V}+a_{2}^{V} \cos 2 \phi+a_{3}^{V} \sin 2 \phi\right) \sin ^{2} \theta+b^{V} \cos \theta \\
& V=J / \psi, \gamma \\
& \mathcal{W}^{V}\left(s_{13}, s_{23}, \cos \theta, \phi\right)_{s}=\frac{\left.\sum_{s_{z}}\left|\mathcal{A}_{s_{z}}^{V}(s)\right|^{2}\left|\vec{\epsilon}_{K_{1 s z}} \cdot \overrightarrow{\mathcal{J}}_{K_{1}}\left(s_{13}, s_{23}\right)\right|_{s}\right|^{2}}{\int d s_{13} \int d s_{23} \int d(\cos \theta) \int d \phi \sum_{s_{z}}\left|\mathcal{A}_{s_{z}}^{V}(s)\right|^{2}\left|\vec{\epsilon}_{K_{1 s_{z}}} \cdot \overrightarrow{\mathcal{J}}_{K_{1}}\left(s_{13}, s_{23}\right)_{s}\right|^{2}} \\
& a^{V}\left(s, s_{13}, s_{23}\right)=N_{s}^{V} \xi_{a}^{V}\left[\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}-2 \operatorname{Re}\left(c_{1} c_{2}^{*}\right) \cos \delta\right], \\
& a_{1}^{V}\left(s, s_{13}, s_{23}\right)=N_{s}^{V} \xi_{a_{i}}^{V}\left[\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}-2 \operatorname{Re}\left(c_{1} c_{2}^{*}\right) \cos \delta\right], \\
& a_{2}^{V}\left(s, s_{13}, s_{23}\right)=N_{s}^{V} \xi_{a_{i}}^{V}\left[\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right) \cos \delta-2 \operatorname{Re}\left(c_{1} c_{2}^{*}\right)\right] \\
& a_{3}^{V}\left(s, s_{13}, s_{23}\right)=N_{s}^{V} \xi_{a_{i}}^{V}\left[\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right) \sin \delta\right], \\
& b^{V}\left(s, s_{13}, s_{23}\right)=-N_{s}^{V} \xi_{b}^{V}\left[2 \operatorname{Im}\left(c_{1} c_{2}^{*}\right) \sin \delta\right], \quad \xi_{a}^{V}(s) \equiv \frac{\left|\mathcal{A}_{+}^{V}(s)\right|^{2}+\left|\mathcal{A}_{-}^{V}(s)\right|^{2}}{2}, \\
& \xi_{a_{i}}^{V}(s) \equiv \frac{-\left(\left|\mathcal{A}_{+}^{V}(s)\right|^{2}+\left|\mathcal{A}_{-}^{V}(s)\right|^{2}\right)+2\left|\mathcal{A}_{0}^{V}(s)\right|^{2}}{4} \\
& \xi_{b}^{V}(s) \equiv \frac{\left|\mathcal{A}_{+}^{V}(s)\right|^{2}-\left|\mathcal{A}_{-}^{V}(s)\right|^{2}}{2} .
\end{aligned}
$$

Preliminary result on the simultaneous fit

EK \& F. Le Diberder B2TiP workshop 2015

* Photon polarization is sensitive to the imaginary part of the K1 decay amplitudes

$$
b^{\gamma} \propto\left\langle\operatorname{Im}\left(\hat{n} \cdot\left(\overrightarrow{\mathcal{J}} \times \overrightarrow{\mathcal{J}}^{*}\right)\right)\right\rangle\left[\left|C_{7}^{\prime}\right|^{2}-\left|C_{7}\right|^{2}\right]
$$

* The imaginary part comes from interference of different resonances (either initial or intermediate states).
* These are very difficult to predict theoretically and the simultaneous fit is the most powerful!

The error matrix for simultaneous fit

$$
E=\left(\begin{array}{c|crrr}
0.034 & -0.133 & -0.021 & -0.067 & 0.007 \\
\hline & 0.040 & 0.260 & 0.630 & -0.320 \\
& 0.019 & 0.395 & -0.470 \\
\text { preliminary } & & 0.680 & -0.405 \\
\text { nesult! } & & & 0.180
\end{array}\right) \stackrel{\text { Photon polarization }}{\longleftarrow} \text { (Kn)s-wave contributions }
$$

At $\sim 3 \%$ level sensitivity to all 5 parameters ($5 k$ events)!

ω method: optimal observable beyond $A^{U D}$

Davier, Duflot, Le Diberder, Rouge, PLB306 '93, Atwood, Soni, PRD45 '92

$$
\mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) \propto a\left(s, s_{13}, s_{23}\right)\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} b\left(s, s_{13}, s_{23}\right) \cos \theta
$$

$$
\omega\left(s, s_{13}, s_{23}, \cos \theta\right) \equiv \frac{b\left(s, s_{13}, s_{23}\right) \cos \theta}{a\left(s, s_{13}, s_{23}\right)\left(1+\cos ^{2} \theta\right)}
$$

How to use the ω variable?

For each event $\xi_{i}\left(\mathrm{~s}, \mathrm{~S}_{13}, \mathrm{~s}_{23}, \cos _{\theta}\right)$:

1. Compute the ω value knowing the function $J\left(s, s_{13}, s_{23}, \cos _{\theta}\right)$.
2. Make a ω distribution.
3. Polarization is then obtained!

$$
\sigma_{\lambda}^{2}=1 / N\left\langle\left(\frac{\omega}{1+\lambda_{\gamma}^{\mathrm{fit}} \omega}\right)^{2}\right\rangle
$$

EK, Le Yaouanc, A.Tayduganov, PRD83 ('II)

ω method: optimal observable beyond $A^{U D}$

Davier, Duflot, Le Diberder, Rouge, PLB306 '93, Atwood, Soni, PRD45 '92

$$
\mathcal{W}\left(s, s_{13}, s_{23}, \cos \theta\right) \propto a\left(s, s_{13}, s_{23}\right)\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} b\left(s, s_{13}, s_{23}\right) \cos \theta
$$

$$
\omega\left(s, s_{13}, s_{23}, \cos \theta\right) \equiv \frac{b\left(s, s_{13}, s_{23}\right) \cos \theta}{a\left(s, s_{13}, s_{23}\right)\left(1+\cos ^{2} \theta\right)}
$$

How to use the ω variable?

For each event $\xi_{i}\left(\mathrm{~s}, \mathrm{~s}_{13}, \mathrm{~S}_{23}, \cos _{9}\right)$:

1. Compute the ω value knowing the function $\mathrm{J}\left(\mathrm{s}, \mathrm{s}_{13}, \mathrm{~S}_{23}, \mathrm{cos}_{8}\right)$.
2. Make a ω distribution.
3. Polarization is then obtained!
$l=\frac{\langle\omega\rangle}{\left\langle\omega^{2}\right\rangle}$

$$
\sigma_{\lambda}^{2}=1 / N\left\langle\left(\frac{\omega}{1+\lambda_{\gamma}^{\mathrm{fit}} \omega}\right)^{2}\right\rangle
$$

EK, Le Yaouanc, A.Tayduganov, PRD83 ('I I)

ω method reduces the statistical errors in λ by a factor of two comparing to $A^{U D}$

Combining diff. charged modes

Thesis Tayduganov '11

Babar'05

$$
\boldsymbol{s a n}^{\text {man }^{\text {e! }}}\left\{\begin{array}{l}
\mathcal{M}_{I}\left(K_{1}^{+} \rightarrow \pi^{0}\left(p_{1}\right) \pi^{+}\left(p_{2}\right) K^{0}\left(p_{3}\right)\right)=\frac{\sqrt{ } 2}{3} \mathcal{M}_{\left(P_{1} P_{3}\right) P_{2}}^{K^{* 0}}-\frac{\sqrt{ } 2}{3} \mathcal{M}_{\left(P_{2} P_{3}\right) P_{1}}^{K^{*+}}+\frac{1}{\sqrt{3}} \mathcal{M}_{\left(P_{1} P_{2}\right) P_{3}}^{\rho^{+}} \\
\mathcal{M}_{I I}\left(K_{1}^{+} \rightarrow \pi^{-}\left(p_{1}\right) \pi^{+}\left(p_{2}\right) K^{+}\left(p_{3}\right)\right)=-\frac{2}{3} \mathcal{M}_{\left(P_{1} P_{3}\right) P_{2}}^{K^{* 0}}-\frac{1}{\sqrt{6}} \mathcal{M}_{\left(P_{1} P_{2}\right) P_{3}}^{\rho_{0}^{0}} \\
\mathcal{M}_{I I I}\left(K_{1}^{0} \rightarrow \pi^{0}\left(p_{1}\right) \pi^{-}\left(p_{2}\right) K^{+}\left(p_{3}\right)\right)=\frac{\sqrt{2}}{3} \mathcal{M}_{\left(P_{1} P_{3}\right) P_{2}}^{K^{*+}}-\frac{\sqrt{2}}{3} \mathcal{M}_{\left(P_{2} P_{3}\right) P_{1}}^{K^{* *}}+\frac{1}{\sqrt{3}} \mathcal{M}_{\left(P_{1} P_{2}\right) P_{3}}^{\rho^{-}} \\
\mathcal{M}_{I V}\left(K_{1}^{0} \rightarrow \pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right) K^{0}\left(p_{3}\right)\right)=-\frac{2}{3} \mathcal{M}_{\left(P_{1} P_{3}\right) P_{2}}^{K^{*+}}-\frac{1}{\sqrt{6}} \mathcal{M}_{\left(P_{1} P_{2}\right) P_{3}}^{\rho_{0}^{0}}
\end{array}\right.
$$

