$B \rightarrow \pi, K, \overline{D}$ and $B \rightarrow \rho, K^*, \overline{D}^*$ Form Factors from *B*-Meson Light-Cone Sum Rules

Technische Universität München

Nico Gubernari

Technische Universität München Based on 1811.00983 with D. Van Dyk and A. Kokulu Towards the Ultimate Precision in Flavour Physics Durham, 3-April-2019

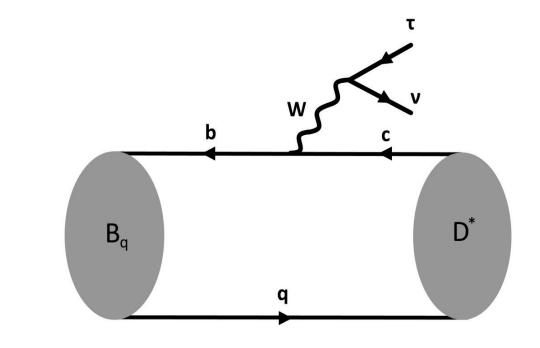
What's new?

 update of the previous calculation for the B→π, K, D and B→ ρ, K*, D* form factors, using B-meson Light-Cone Sum Rules
 [Khodjamirian et al. '06 + '08]

What's new?

• update of the previous calculation for the $B \rightarrow \pi$, K, D and $B \rightarrow \rho$, K*, D* form factors, using B-meson Light-Cone Sum Rules [Khodjamirian et al. '06 + '08]

- inclusion of new $1/m_b$ corrections
- shift down of 10% 30% the form factors values, comparing with the previous calculation
- prediction of R(D*) using only theoretical inputs for the first time and without using HQET relations for the *charm* quark (no experimental inputs)


Introduction

The importance of form factors in flavour physics 2/18

The $B \rightarrow P$ and $B \rightarrow V$ form factors (FFs) are needed to

- predict decay amplitudes, such as $B \rightarrow \{P, V\} l\bar{l}$ or $B \rightarrow \{P, V\} lv$
- extract $|V_{CKM}|$ matrix elements from branching ratios
- test the Standard Model and constrain new physics contributions

Anomalies in semileptonic *B* decays

3/18

FFs are a crucial inputs for accurate predictions of observables in various semileptonic *B*-meson decays

 $B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the *b* anomalies

Anomalies in semileptonic *B* decays

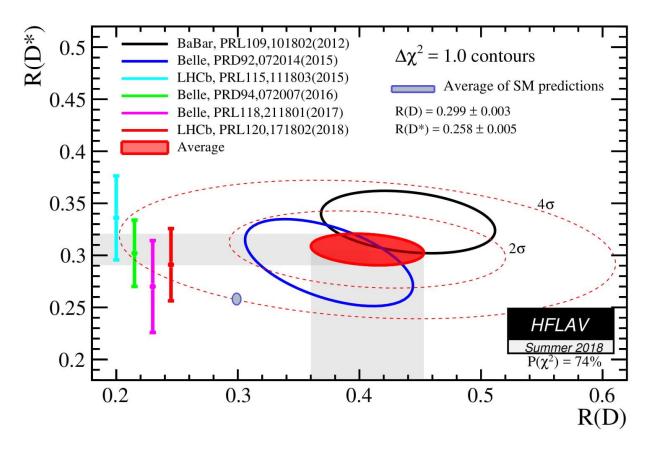
3/18

FFs are a crucial inputs for accurate predictions of observables in various semileptonic *B*-meson decays

 $B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the *b* anomalies

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau^+\nu)}{BR(B \to D^{(*)}\mu^+\nu)}$$

Anomalies in semileptonic B decays


3/18

FFs are a crucial inputs for accurate predictions of observables in various semileptonic *B*-meson decays

 $B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the *b* anomalies

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau^+\nu)}{BR(B \to D^{(*)}\mu^+\nu)}$$

combination of experimental results (from LHCb, Belle and BaBar) leads to a **4σ deviation** from the SM prediction

Definition of the form factors

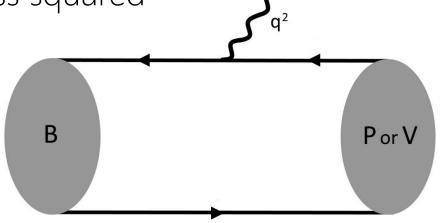
FFs parametrize exclusive local hadronic matrix elements

$$\langle P(k) | \, \bar{q}_{\nu} \gamma^{\mu} b \, | B(k+q) \rangle = 2k^{\mu} \, f_{+}^{B \to P} + q^{\mu} \left[f_{+}^{B \to P} + f_{-}^{B \to P} \right]$$

$$\langle V(k,\eta) | \, \bar{q} \gamma^{\mu} b \, | B(k+q) \rangle = \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2V^{B \to V}}{M_{B} + M_{V}}$$

FFs are functions of q^2 , where q^2 is the dilepton mass squared

Definition of the form factors


FFs parametrize exclusive local hadronic matrix elements

$$\langle P(k) | \bar{q}_{\nu} \gamma^{\mu} b | B(k+q) \rangle = 2k^{\mu} f_{+}^{B \to P} + q^{\mu} \left[f_{+}^{B \to P} + f_{-}^{B \to P} \right]$$
$$\langle V(k,\eta) | \bar{q} \gamma^{\mu} b | B(k+q) \rangle = \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2V^{B \to V}}{M_{B} + M_{V}}$$

FFs are functions of q^2 , where q^2 is the dilepton mass squared

3 independent *B* to pseudoscalar (*P*) FFs 7 independent *B* to vector (*V*) FFs

We consider here the final states $P = \pi$, K, Dand $V = \rho$, K^* , D^*

Our approach to the calculation

Methods to compute FFs

QCD perturbation theory breaks down at low energies **non-perturbative techniques** are needed to FFs

Methods to compute FFs

QCD perturbation theory breaks down at low energies **non-perturbative techniques** are needed to FFs

Light-cone sum rules (LCSRs)

quark-hadron duality approximation

universal *B*-meson matrix elements

effective at low q^2

Methods to compute FFs

QCD perturbation theory breaks down at low energies **non-perturbative techniques** are needed to FFs

Light-cone sum rules (LCSRs)

quark-hadron duality approximation

universal *B*-meson matrix elements

effective at low q^2

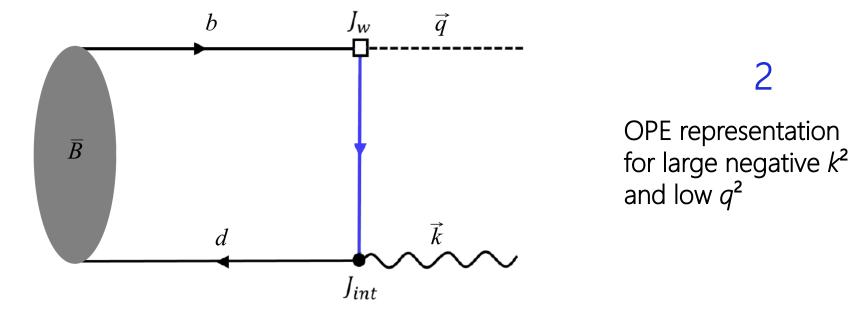
Lattice QCD numerical evaluation of correlators in a finite and discrete space-time effective at high q^2

Light-cone Sum Rules in a nutshell 1 6/18

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

$$\Pi(k,q) = i \int d^4 x e^{ik \cdot x} \langle 0 | \mathcal{T}\{J_{int}(x), J_{weak}(0)\} | B(q+k) \rangle \quad \text{with } x^2 \simeq 0$$

Light-cone Sum Rules in a nutshell 1 6/18

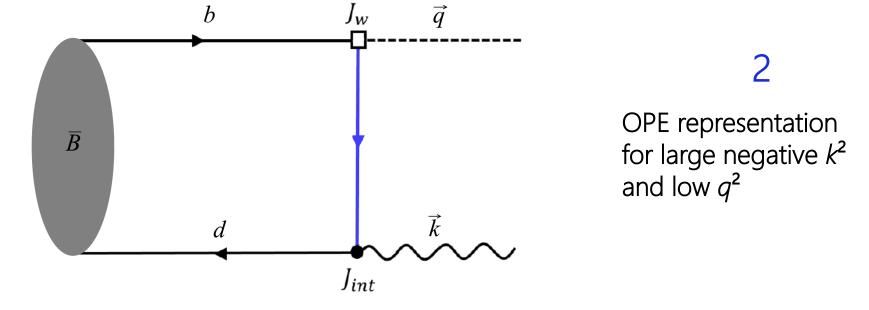

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

$$\Pi(k,q) = i \int d^4 x e^{ik \cdot x} \langle 0 | \mathcal{T}\{J_{int}(x), J_{weak}(0)\} | B(q+k) \rangle \quad \text{with } x^2 \simeq 0$$

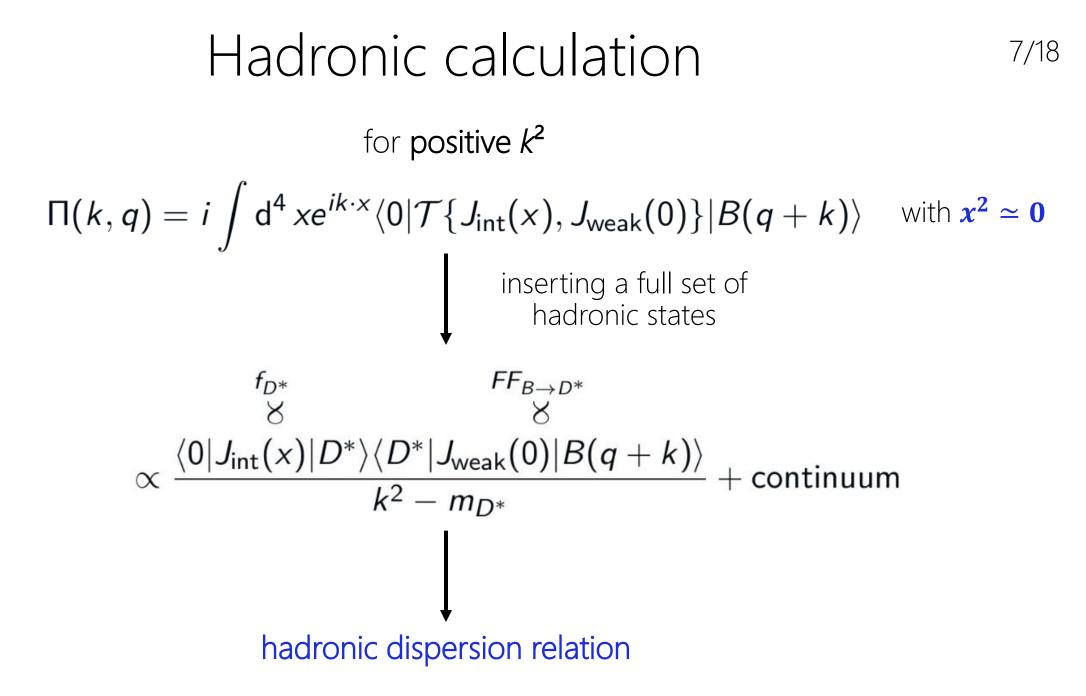
two ways to compute the correlator

Hadronic representation for positive k^2

1


Light-cone Sum Rules in a nutshell 1 6/18

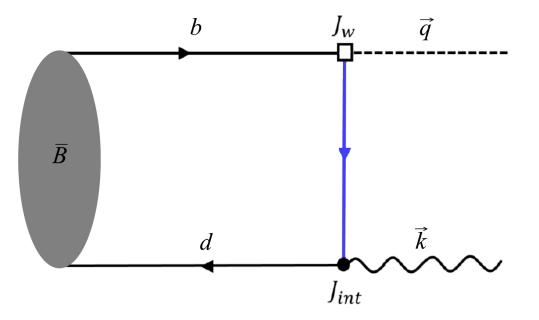
LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$


$$\Pi(k,q) = i \int d^4 x e^{ik \cdot x} \langle 0 | \mathcal{T}\{J_{int}(x), J_{weak}(0)\} | B(q+k) \rangle \quad \text{with } x^2 \simeq 0$$

two ways to compute the correlator

Hadronic representation for positive k^2

the sum rule is obtained matching the result the two different representations of Π(k, q) using semi-global quark-hadron duality

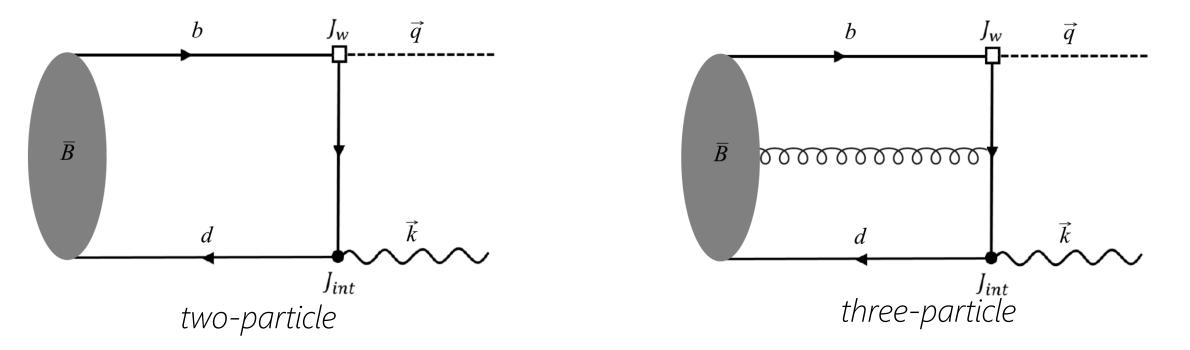


Light-cone Sum Rules in a nutshell 2

8/18

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

Π(k, q) is then expanded near the light-cone



Light-cone Sum Rules in a nutshell 2

8/18

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$ $\Pi(k, q)$ is then expanded near the light-cone

$$\Pi(k^2,q^2) = f_B m_B \int_0^\infty \mathrm{d}s \sum_{n,t} \frac{J_{n,t}(s,q^2)}{[k^2-s]^n} \phi_t(s)$$

Light-cone Sum Rules in a nutshell 2

8/18

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

Π(k, q) is then expanded near the light-cone

$$\Pi(k^2, q^2) = f_B m_B \int_0^\infty ds \sum_{n,t} \frac{J_{n,t}(s, q^2)}{[k^2 - s]^n} \phi_t(s)$$

- compute $J_{n,t}$ from a **perturbative** hard scattering kernel
- B-meson Light-Cone Distribution Amplitudes (LCDAs) ϕ_t are necessary non-perturbative inputs

- both 2pt and 3pt *B*-LCDAs are organized in a twist expansion (twist = dimension spin)
- higher twist contributions are powers of $1/m_b$ suppressed

The Sum Rule

matching of the Hadronic calculation with the OPE

apply **Borel transformation** and **quark-hadron duality** (removes continuum contribution and the tail of the OPE)

SUM RULE

$$FF_{B\to D^*}(q^2) = \frac{f_B m_B}{f_{D^*}} \int_0^{s_0} ds \ e^{\frac{m_{D^*} - s}{M^2}} \sum_{n,t} J_{n,t}(s,q^2) \phi_t(s)$$

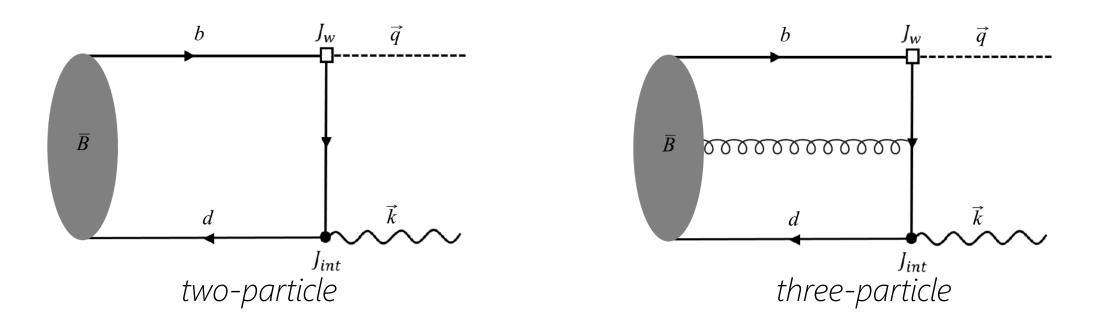
 s_0 is an effective threshold parameter

The Sum Rule

matching of the Hadronic calculation with the OPE

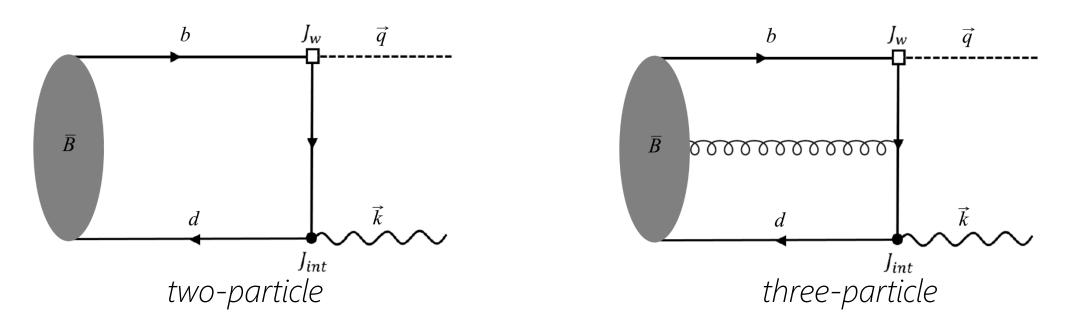
apply **Borel transformation** and **quark-hadron duality** (removes continuum contribution and the tail of the OPE)

SUM RULE


$$FF_{B\to D^*}(q^2) = \frac{f_B m_B}{f_{D^*}} \int_0^{s_0} \mathrm{d}s \; e^{\frac{m_{D^*} - s}{M^2}} \sum_{n,t} J_{n,t}(s,q^2) \, \phi_t(s)$$

 s_0 is an effective threshold parameter

method already applied to $B \rightarrow \{P, V\}$ transitions up to **twist 3** [Khodjamirian et al. '06 + '08] **new models and higher twist LCDAs** triggered our revisiting of the sum rules [Braun/Ji/Manashov '17]


More about Sum Rules

- expansion of the propagator near the light-cone gives two-particle (2pt) and three-particle (3pt) contributions, organized in a twist expansion
- higher twist contributions are powers of $1/m_b$ suppressed
- we present **new twist 4 corrections** to the $B \rightarrow \{P, V\}$ LCSRs (previous calculation was up to twist 3)

More about Sum Rules

- 10/18
- expansion of the propagator near the light-cone gives two-particle (2pt) and three-particle (3pt) contributions, organized in a twist expansion
- higher twist contributions are powers of $1/m_b$ suppressed
- we present new twist 4 corrections to the $B \rightarrow \{P, V\}$ LCSRs (previous calculation was up to twist 3)
- *B*-LCDAs of twists > 4 are order $1/m_b^2$, therefore not considered here
- $O(\alpha_s)$ corrections are not (yet) included

Numerical Results

Numerical Results for $B \rightarrow D^*$ FFs

		NEW Contrib.	
$B ightarrow D^*$ FF	2pt tw2+3	2pt tw4	3pt tw3+4
$V(q^2 = 0)$	1.02	-0.33	-0.0038
$A_0(q^2 = 0)$	0.78	-0.09	-0.0002
$A_1(q^2 = 0)$	0.73	-0.13	-0.0010
$A_{12}(q^2 = 0)$	0.22	-0.02	-0.0001

 $[q^2$ is the dilepton mass square]

 ϕ_+, ϕ_- two-particle L + NL twist contributions g_+, g_-^{WW} new two-particle NNL twist contributions $\phi_3, \phi_4, \psi_4, \chi_4$ three-particle NL + NNL twist contributions

[Braun/Ji/Manashov '17]

Comparison with FKKM2008

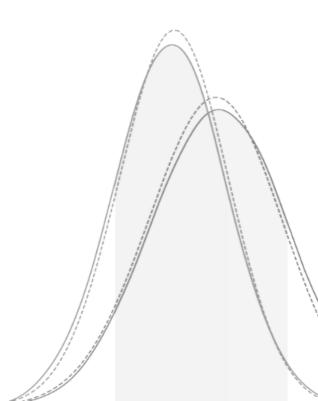
	FKKM2008	KM2008 GKvD2018	
$B ightarrow D^*$ FF	2pt tw2+3 + 3pt	2pt tw2+3+4 + 3pt*	
$V(q^2 = 0)$	0.96 ± 0.29	0.69 ± 0.13	
$A_0(q^2 = 0)$	0.78 ± 0.22	0.67 ± 0.11	
$A_1(q^2 = 0)$	0.73 ± 0.19	0.60 ± 0.09	
$A_{12}(q^2 = 0)$	0.22 ± 0.07	0.21 ± 0.04	

[Faller/Khodjamirian/Klein/Mannel '08]

Comparison with FKKM2008

	FKKM2008	GKvD2018	
$B ightarrow D^*$ FF	2pt tw2+3 + 3pt	2pt tw2+3+4 + 3pt*	
$V(q^2 = 0)$	0.96 ± 0.29	0.69 ± 0.13	
$A_0(q^2 = 0)$	0.78 ± 0.22	0.67 ± 0.11	
$A_1(q^2 = 0)$	0.73 ± 0.19	0.60 ± 0.09	
$A_{12}(q^2 = 0)$	0.22 ± 0.07	0.21 ± 0.04	

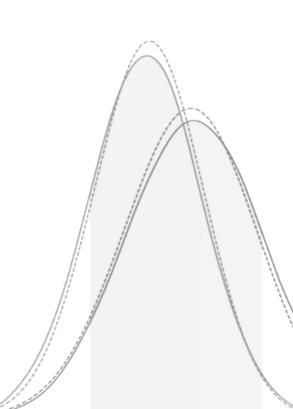
[Faller/Khodjamirian/Klein/Mannel '08]


- include twist 4 correction for the 2pt B-LCDAs
- for the first time results considering the full set of 3pt B-LCDAs up to twist 4
- **new models** for the *B*-LCDAs
- we use up-to-date inputs

[Braun/Ji/Manashov '17]

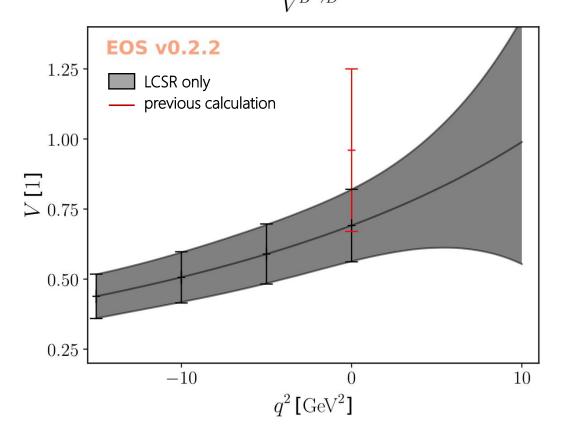
Uncertainties

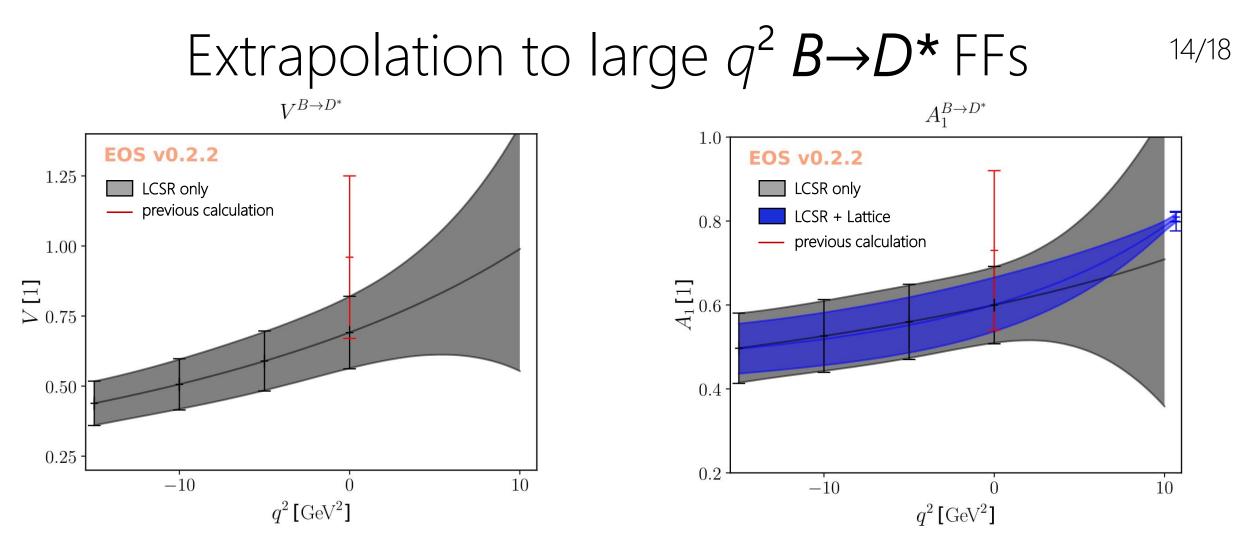
- parametric uncertainties (decay constants, λ_B , λ_H^2 , λ_E^2 ,...) $\rightarrow B \rightarrow \gamma l \nu$ measurement, lattice QCD [Beneke/Braun/Ji/Wei '18]
- sum rule stability (dependence on the Borel parameter M^2)
- off-light cone (O($1/m_b^2$)) corrections (estimated 5%)


ightarrow inclusion higher twists

Uncertainties

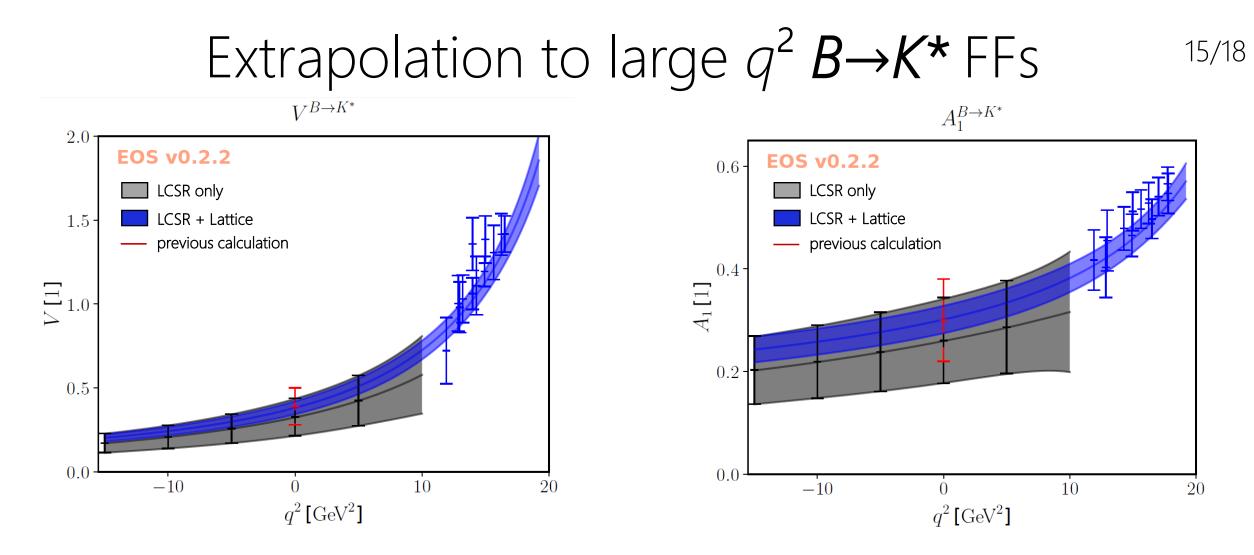
- parametric uncertainties (decay constants, λ_B , λ_H^2 , λ_E^2 ,...) $\rightarrow B \rightarrow \gamma l \nu$ measurement, lattice QCD [Beneke/Braun/Ji/Wei '18]
- sum rule stability (dependence on the Borel parameter M^2)
- off-light cone (O($1/m_b^2$)) corrections (estimated 5%)


- not included in our analysis
- α_s corrections (10%?)? [Wang/Shen '15]
- model dependence of the *B*-LCDAs? [Beneke/Braun/Ji/Wei '18]
- semi-global quark-hadron duality approximation? (Borel transformation)


ightarrow inclusion higher twists

Extrapolation to large $q^2 B \rightarrow D^*$ FFs

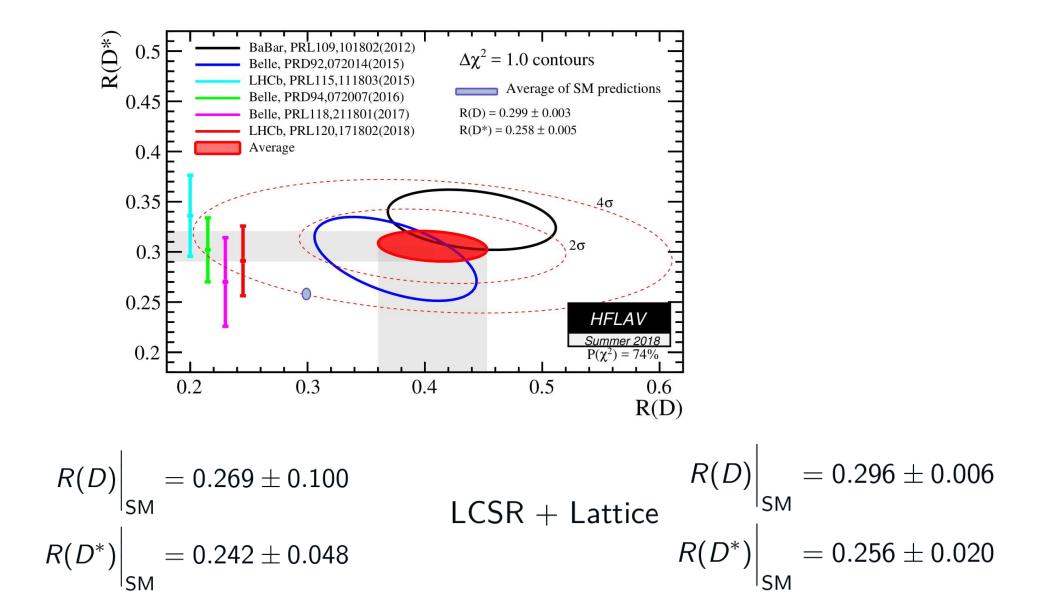
14/18



We fit our results to the BSZ2015 parametrization to extrapolate the FFs values in the whole spectrum [Bharrucha/Straub/Zwicky '15]

We fit our results to the BSZ2015 parametrization to extrapolate the FFs values in the whole spectrum [Bharrucha/Straub/Zwicky '15]

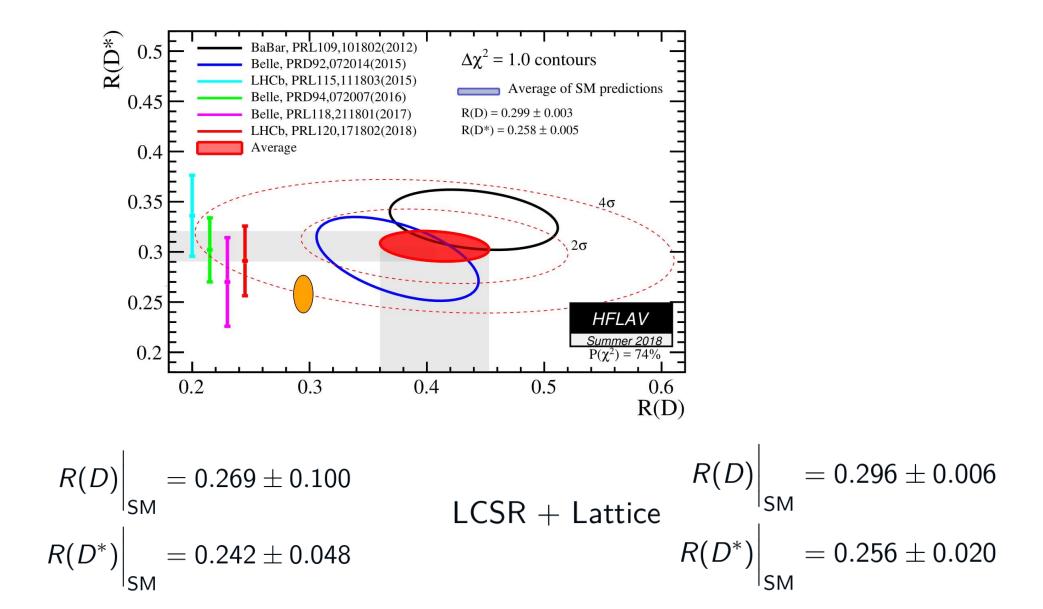
Only A_1 is presently known from Lattice QCD at q^2_{max} the other 6 FFs are given for the first time at different q^2 points


 $B \rightarrow K^*$ more lattice data available at different q^2 values

fits show good agreement between lattice and LCSRs calculations (p values close to one)

Our results and fits

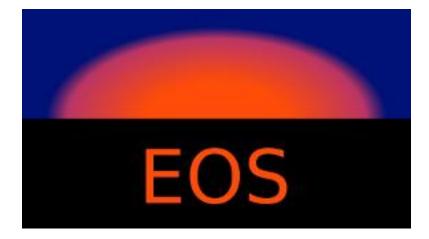
- analytical expressions for all our sum rules $(B \rightarrow \pi, K, D \text{ and } B \rightarrow \rho, K^*, D^* \text{ transitions})$
- many sum rules are given for the first time (tensor FFs) $2 = f_{BMB}$
- numerical results at different q^2 points: $q^2 = \{-15, -10, -5, 0, +5\}$ GeV², for D and D* we don't consider the $q^2 = +5$ GeV² point uncertainties and correlations between form factors
- uncertainties and correlations between form factors
- fit to the BSZ2015 parametrization with and without lattice points


R(D) and R(D*) predictions

17/18

LCSR only

R(D) and R(D*) predictions



17/18

LCSR only

Summary

- update of the previous calculation for the $B \rightarrow \pi$, K, D and $B \rightarrow \rho$, K*, D* form factors using B-LCSRs, by including twist 4 corrections
- shift down of 10% 30% the form factors values
- prediction of R(D*) using only theoretical inputs for the first time (and without using HQET relations for the *charm* quark)
- our numerical results, including correlations, are available as machine readable files
- results are easily accessible with the latest versions of the open source software EOS (https://github.com/eos/eos) and flavio (https://flav-io.github.io/)

Summary

18/18

- update of the previous calculation for the $B \rightarrow \pi$, K, D and $B \rightarrow \rho$, K*, D* form factors using B-LCSRs, by including twist 4 corrections
- shift down of 10% 30% the form factors values
- prediction of R(D*) using only theoretical inputs for the first time (and without using HQET relations for the *charm* quark)
- our numerical results, including correlations, are available as machine readable files
- results are easily accessible with the latest versions of the open source software EOS (https://github.com/eos/eos) and flavio (https://flav-io.github.io/)

Outlook

- impact of radiative corrections
- applying our framework to **non-local matrix elements**

Thank you for your attention!