$B \rightarrow \pi, K, \bar{D}$ and $B \rightarrow \rho, K^{*}, \bar{D}^{*}$ Form Factors from B-Meson Light-Cone Sum Rules

Nico Gubernari

Technische Universität München
Based on 1811.00983
with D. Van Dyk and A. Kokulu

Towards the Ultimate
Precision in Flavour Physics
Durham, 3-April-2019

What's new?

- update of the previous calculation for the $B \rightarrow \pi, K, D$ and $B \rightarrow \rho, K^{*}, D^{*}$ form factors, using B-meson Light-Cone Sum Rules
[Khodjamirian et al. '06 + '08]

What's new?

- update of the previous calculation for the $B \rightarrow \pi, K, D$ and $B \rightarrow \rho, K^{*}, D^{*}$ form factors, using B-meson Light-Cone Sum Rules
[Khodjamirian et al. '06 + '08]
- inclusion of new $1 / m_{b}$ corrections
- shift down of $10 \%-30 \%$ the form factors values, comparing with the previous calculation
- prediction of $R\left(D^{*}\right)$ using only theoretical inputs for the first time and without using HQET relations for the charm quark (no experimental inputs)

Introduction

The importance of form factors in flavour physics 2/18

The $B \rightarrow P$ and $B \rightarrow V$ form factors (FFs) are needed to

- predict decay amplitudes, such as $B \rightarrow\{P, V\} l \bar{I}$ or $B \rightarrow\{P, V\} / v$
- extract $\left|\mathrm{V}_{\text {CKM }}\right|$ matrix elements from branching ratios
- test the Standard Model and constrain new physics contributions

Anomalies in semileptonic B decays

FFs are a crucial inputs for accurate predictions of observables in various semileptonic B meson decays
$B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the b anomalies

Anomalies in semileptonic B decays

FFs are a crucial inputs for accurate predictions of observables in various semileptonic B meson decays
$B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the b anomalies

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau^{+} \nu\right)}{B R\left(B \rightarrow D^{(*)} \mu^{+} \nu\right)}
$$

Anomalies in semileptonic B decays

FFs are a crucial inputs for accurate predictions of observables in various semileptonic B meson decays
$B \rightarrow D^{(*)}$ and $B \rightarrow K^{(*)}$ form factors are particularly important in the context of the b anomalies

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau^{+} \nu\right)}{B R\left(B \rightarrow D^{(*)} \mu^{+} \nu\right)}
$$

combination of experimental results (from LHCb, Belle and BaBar) leads to a 4σ deviation from the SM prediction

Definition of the form factors

FFs parametrize exclusive local hadronic matrix elements

$$
\begin{aligned}
& \langle P(k)| \bar{q}_{v} \gamma^{\mu} b|B(k+q)\rangle=2 k^{\mu} f_{+}^{B \rightarrow P}+q^{\mu}\left[f_{+}^{B \rightarrow P}+f_{-}^{B \rightarrow P}\right] \\
& \langle V(k, \eta)| \bar{q} \gamma^{\mu} b|B(k+q)\rangle=\epsilon^{\mu \nu \rho \sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2 V^{B \rightarrow V}}{M_{B}+M_{V}}
\end{aligned}
$$

FFs are functions of q^{2}, where q^{2} is the dilepton mass squared

Definition of the form factors

FFs parametrize exclusive local hadronic matrix elements
$\langle P(k)| \bar{q}_{v} \gamma^{\mu} b|B(k+q)\rangle=2 k^{\mu} f_{+}^{B \rightarrow P}+q^{\mu}\left[f_{+}^{B \rightarrow P}+f_{-}^{B \rightarrow P}\right]$
$\langle V(k, \eta)| \bar{q} \gamma^{\mu} b|B(k+q)\rangle=\epsilon^{\mu \nu \rho \sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2 V^{B \rightarrow V}}{M_{B}+M_{V}}$
FFs are functions of q^{2}, where q^{2} is the dilepton mass squared
3 independent B to pseudoscalar (P) FFs 7 independent B to vector (V) FFs

We consider here the final states $P=\pi, K, D$ and $V=\rho, K^{*}, D^{*}$

Our approach to the calculation

Methods to compute FFs

QCD perturbation theory breaks down at low energies non-perturbative techniques are needed to FFs

Methods to compute FFs

QCD perturbation theory breaks down at low energies non-perturbative techniques are needed to FFs

Light-cone sum rules (LCSRs)
quark-hadron duality approximation
universal B-meson matrix elements
effective at low q^{2}

Methods to compute FFs

QCD perturbation theory breaks down at low energies non-perturbative techniques are needed to FFs

Light-cone sum rules (LCSRs)
quark-hadron duality approximation
universal B-meson matrix elements effective at low q^{2}

Lattice QCD
numerical evaluation of correlators in a finite and discrete space-time effective at high q^{2}

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

$$
\Pi(k, q)=i \int \mathrm{~d}^{4} x e^{i k \cdot x}\langle 0| \mathcal{T}\left\{J_{\text {int }}(x), J_{\text {weak }}(0)\right\}|B(q+k)\rangle \quad \text { with } \boldsymbol{x}^{2} \simeq \mathbf{0}
$$

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$

$$
\Pi(k, q)=i \int \mathrm{~d}^{4} x e^{i k \cdot x}\langle 0| \mathcal{T}\left\{J_{\text {int }}(x), J_{\text {weak }}(0)\right\}|B(q+k)\rangle \quad \text { with } x^{2} \simeq 0
$$

two ways to compute the correlator

2
OPE representation for large negative k^{2} and low q^{2}

Light-cone Sum Rules in a nutshell 1 6/18

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$ $\Pi(k, q)=i \int \mathrm{~d}^{4} x e^{i k \cdot x}\langle 0| \mathcal{T}\left\{J_{\text {int }}(x), J_{\text {weak }}(0)\right\}|B(q+k)\rangle \quad$ with $x^{2} \simeq \mathbf{0}$
two ways to compute the correlator

2
OPE representation for large negative k^{2} and low q^{2}
the sum rule is obtained matching the result the two different representations of $\Pi(k, q)$ using semi-global quark-hadron duality

Hadronic calculation

for positive k^{2}

$$
\Pi(k, q)=i \int \mathrm{~d}^{4} x e^{i k \cdot x}\langle 0| \mathcal{T}\left\{J_{\text {int }}(x), J_{\text {weak }}(0)\right\}|B(q+k)\rangle \quad \text { with } x^{2} \simeq 0
$$

inserting a full set of hadronic states

$$
\begin{aligned}
& \stackrel{f}{f_{D^{*}}} \underset{\gamma}{ } \quad \stackrel{F F_{B \rightarrow D^{*}}}{ } \\
& \propto \frac{\langle 0| J_{\text {int }}(x)\left|D^{*}\right\rangle\left\langle D^{*}\right| J_{\text {weak }}(0)|B(q+k)\rangle}{k^{2}-m_{D^{*}}}+\text { continuum } \\
& \downarrow \\
& \text { hadronic dispersion relation }
\end{aligned}
$$

Light-cone Sum Rules in a nutshell 2

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$
$\Pi(k, q)$ is then expanded near the light-cone

Light-cone Sum Rules in a nutshell 2

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$
$\Pi(k, q)$ is then expanded near the light-cone

$$
\Pi\left(k^{2}, q^{2}\right)=f_{B} m_{B} \int_{0}^{\infty} \mathrm{d} s \sum_{n, t} \frac{J_{n, t}\left(s, q^{2}\right)}{\left[k^{2}-s\right]^{n}} \phi_{t}(s)
$$

Light-cone Sum Rules in a nutshell 2

LCSRs are used to determine FFs from a correlation function $\Pi(k, q)$
$\Pi(k, q)$ is then expanded near the light-cone

$$
\Pi\left(k^{2}, q^{2}\right)=f_{B} m_{B} \int_{0}^{\infty} \mathrm{d} s \sum_{n, t} \frac{J_{n, t}\left(s, q^{2}\right)}{\left[k^{2}-s\right]^{n}} \phi_{t}(s)
$$

- compute $J_{n, t}$ from a perturbative hard scattering kernel
- B-meson Light-Cone Distribution Amplitudes (LCDAs) ϕ_{t} are necessary non-perturbative inputs
- both 2 pt and 3 pt B-LCDAs are organized in a twist expansion (twist = dimension - spin)
- higher twist contributions are powers of $1 / m_{b}$ suppressed

The Sum Rule

matching of the Hadronic calculation with the OPE
apply Borel transformation and quark-hadron duality (removes continuum contribution and the tail of the OPE)

SUM RULE

$$
F F_{B \rightarrow D^{*}}\left(q^{2}\right)=\frac{f_{B} m_{B}}{f_{D^{*}}} \int_{0}^{s_{0}} \mathrm{~d} s e^{\frac{m_{D^{*}-s}}{M^{2}}} \sum_{n, t} J_{n, t}\left(s, q^{2}\right) \phi_{t}(s)
$$

s_{0} is an effective threshold parameter

The Sum Rule

matching of the Hadronic calculation with the OPE
apply Borel transformation and quark-hadron duality (removes continuum contribution and the tail of the OPE)

SUM RULE

$$
F F_{B \rightarrow D^{*}}\left(q^{2}\right)=\frac{f_{B} m_{B}}{f_{D^{*}}} \int_{0}^{s_{0}} \mathrm{~d} s e^{\frac{m_{D^{*}}-s}{M^{2}}} \sum_{n, t} J_{n, t}\left(s, q^{2}\right) \phi_{t}(s)
$$

s_{0} is an effective threshold parameter
method already applied to $B \rightarrow\{P, V\}$ transitions up to twist 3

More about Sum Rules

- expansion of the propagator near the light-cone gives two-particle (2pt) and three-particle (3pt) contributions, organized in a twist expansion
- higher twist contributions are powers of $1 / m_{b}$ suppressed
- we present new twist 4 corrections to the $B \rightarrow\{P, V\}$ LCSRs (previous calculation was up to twist 3)

More about Sum Rules

- expansion of the propagator near the light-cone gives two-particle (2pt) and three-particle (3pt) contributions, organized in a twist expansion
- higher twist contributions are powers of $1 / m_{b}$ suppressed
- we present new twist 4 corrections to the $B \rightarrow\{P, V\}$ LCSRs (previous calculation was up to twist 3)
- B-LCDAs of twists >4 are order $1 / m_{b}^{2}$, therefore not considered here
- $O\left(\alpha_{s}\right)$ corrections are not (yet) included

Numerical Results

Numerical Results for $B \rightarrow D^{*}$ FFs

		NEW Contrib.	
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*} \mathbf{F F}$	2pt tw2+3	2pt tw4	3pt tw3+4
$V\left(q^{2}=0\right)$	1.02	-0.33	-0.0038
$A_{0}\left(q^{2}=0\right)$	0.78	-0.09	-0.0002
$A_{1}\left(q^{2}=0\right)$	0.73	-0.13	-0.0010
$A_{12}\left(q^{2}=0\right)$	0.22	-0.02	-0.0001

$$
\text { [} q^{2} \text { is the dilepton mass square] }
$$

$\phi_{+} \phi_{-} \quad$ two-particle L + NL twist contributions
$g_{+}, g_{-}^{W W}$ new two-particle NNL twist contributions
$\phi_{3}, \phi_{4}, \psi_{4} \chi_{4}$, three-particle NL + NNL twist contributions

Comparison with FKKM2008

FKKM2008	GKvD2018	
$\boldsymbol{B} \rightarrow \boldsymbol{D}^{*}$ FF	2pt tw2+3 + 3pt	2pt tw2 $+\mathbf{3 + 4}+$ 3pt *
$V\left(q^{2}=0\right)$	0.96 ± 0.29	0.69 ± 0.13
$A_{0}\left(q^{2}=0\right)$	0.78 ± 0.22	0.67 ± 0.11
$A_{1}\left(q^{2}=0\right)$	0.73 ± 0.19	0.60 ± 0.09
$A_{12}\left(q^{2}=0\right)$	0.22 ± 0.07	0.21 ± 0.04

[Faller/Khodjamirian/Klein/Mannel '08]

Comparison with FKKM2008

$B \rightarrow D^{*} \mathrm{FF}$	FKKM2008 2pt tw $2+3+3 p t$	GKvD2018 $2 p t t^{2} 2+3+4+3 p t{ }^{*}$
$V\left(q^{2}=0\right)$	0.96 ± 0.29	0.69 ± 0.13
$A_{0}\left(q^{2}=0\right)$	0.78 ± 0.22	0.67 ± 0.11
$A_{1}\left(q^{2}=0\right)$	0.73 ± 0.19	0.60 ± 0.09
$A_{12}\left(q^{2}=0\right)$	0.22 ± 0.07	0.21 ± 0.04

[Faller/Khodjamirian/Klein/Mannel '08]

- include twist 4 correction for the 2 pt B-LCDAs
- for the first time results considering the full set of 3 pt B-LCDAs up to twist 4
- new models for the B-LCDAs
- we use up-to-date inputs

Uncertainties

- parametric uncertainties (decay constants, $\left.\lambda_{B}, \lambda_{H}^{2}, \lambda_{E}^{2}, \ldots\right) \rightarrow B \rightarrow \boldsymbol{\gamma} \boldsymbol{l} \boldsymbol{v}$ measurement, lattice QCD
[Beneke/Braun/Ji/Wei '18]
- sum rule stability (dependence on the Borel parameter M^{2})
- off-light cone $\left(\mathrm{O}\left(1 / m_{b}^{2}\right)\right)$ corrections (estimated $\left.5 \%\right)$
$\} \rightarrow$ inclusion higher twists

Uncertainties

- parametric uncertainties (decay constants, $\left.\lambda_{B}, \lambda_{H}^{2}, \lambda_{E}^{2}, \ldots\right) \rightarrow B \rightarrow \boldsymbol{v} \boldsymbol{l} \boldsymbol{\nu}$ measurement, lattice QCD
[Beneke/Braun/Ji/Wei '18]
- sum rule stability (dependence on the Borel parameter M^{2})
- off-light cone $\left(\mathrm{O}\left(1 / m_{b}^{2}\right)\right)$ corrections (estimated $\left.5 \%\right)$
$\} \rightarrow$ inclusion higher twists

not included in our analysis

- $\boldsymbol{\alpha}_{\boldsymbol{s}}$ corrections (10\%?)? [Wang/Shen '15]
- model dependence of the B-LCDAs? [Beneke/Braun/Ji/Wei '18]
- semi-global quark-hadron duality approximation? (Borel transformation)

Extrapolation to large $q^{2} B \rightarrow D^{*}$ FFs

 $V^{B \rightarrow D^{*}}$

We fit our results to the BSZ2015 parametrization to extrapolate the FFs values in the whole spectrum

Extrapolation to large $q^{2} B \rightarrow D^{*}$ FFs

$V^{B \rightarrow D^{*}}$

We fit our results to the BSZ2015 parametrization to extrapolate the FFs values in the whole spectrum
Only A_{1} is presently known from Lattice QCD at q^{2} max the other 6 FFs are given for the first time at different q^{2} points

Extrapolation to large $q^{2} B \rightarrow K^{\star} F F s$

$B \rightarrow K^{*}$ more lattice data available at different q^{2} values
fits show good agreement between lattice and LCSRs calculations (p values close to one)

Our results and fits

- analytical expressions for all our sum rules ($B \rightarrow \pi, K, D$ and $B \rightarrow \rho, K^{*}, D^{*}$ transitions)
- many sum rules are given for the first time (tensor FFs)
 $=f_{B} m_{B}$
- numerical results at different q^{2} points: $q^{2}=\{-15,-10,-5,0,+5\} \mathrm{GeV}^{2}$, for D and D^{*} we don't consider the $q^{2}=+5 \mathrm{GeV}^{2}$ point uncertainties and correlations between form factors
- uncertainties and correlations between form factors
- fit to the BSZ2015 parametrization with and without lattice points

$R(D)$ and $R\left(D^{*}\right)$ predictions

$$
\begin{array}{rr}
\left.R(D)\right|_{\text {SM }}=0.269 \pm 0.100 & \left.R(D)\right|_{\text {SM }}=0.296 \pm 0.006 \\
\left.R\left(D^{*}\right)\right|_{\text {SM }}=0.242 \pm 0.048 & \left.R\left(D^{*}\right)\right|_{\text {SM }}=0.256 \pm 0.020
\end{array}
$$

$R(D)$ and $R\left(D^{*}\right)$ predictions

$$
\begin{aligned}
\left.R(D)\right|_{\text {SM }} & =0.269 \pm 0.100 \\
R\left(D^{*}\right) & \left.R(D)\right|_{\text {SM }}
\end{aligned}=0.242 \pm 0.048 \quad \text { LCSR }+ \text { Lattice }\left.\quad R\left(D^{*}\right)\right|_{\text {SM }}=0.296 \pm 0.006 \pm 0.020
$$

Summary

- update of the previous calculation for the $B \rightarrow \pi, K, D$ and $B \rightarrow \rho, K^{*}, D^{*}$ form factors using B-LCSRs, by including twist 4 corrections
- shift down of $10 \%-30 \%$ the form factors values
- prediction of $R\left(D^{*}\right)$ using only theoretical inputs for the first time (and without using HQET relations for the charm quark)
- our numerical results, including correlations, are available as machine readable files
- results are easily accessible with the latest versions of the open source software EOS (https://github.com/eos/eos) and flavio (https://flav-io.github.io/)

Summary

- update of the previous calculation for the $B \rightarrow \pi, K, D$ and $B \rightarrow \rho, K^{*}, D^{*}$ form factors using B-LCSRs, by including twist 4 corrections
- shift down of $10 \%-30 \%$ the form factors values
- prediction of $R\left(D^{*}\right)$ using only theoretical inputs for the first time (and without using HQET relations for the charm quark)
- our numerical results, including correlations, are available as machine readable files
- results are easily accessible with the latest versions of the open source software EOS (https://github.com/eos/eos) and flavio (https://flav-io.github.io/)

Outlook

- impact of radiative corrections
- applying our framework to non-local matrix elements

Thank you for your attention!

